Position:Home >> Abstract

Authors:
Units:
KeyWords:
ClassificationCode:
year,volume(issue):pagination: 2013,33(4):1-6

Abstract:

Funds:
国家重点基础研究发展计划(973计划)(2009CB623401, 2012CB932802),国家高技术研究发展计划(863计划)重大项目(2012AA03A601), 青年科学基金项目(51203151)。

AuthorIntro:
第一作者简介:张奇峰,1982年生,男,内蒙古呼和浩特人,博士,助理研究员,2011年6月起在中国科学院长春应用化学研究所工作,从事新型高分子分离膜材料的开发和制膜工艺研究。〈qfzhang@ciac.jl.cn〉 通讯联系人简介: 张所波,1963年生, 男, 吉林省白山人, 研究员, 博导, 中科院百人计划,国家杰出青年基金获得者。主要从事高分子分离膜材料合成研究。〈sbzhang@ciac.jl.cn〉

Reference:
[1] 高从堦. 杨尚保. 反渗透复合膜技术进展和展望. [J]. 膜 科 学 与 技 术,2011, 31 (3): 1~4。
[2] 李磊. 新型反渗透、纳滤复合膜材料的制备与性能 [D]: [博士学位论文]. 长春:中国科学院长春应用化学研究所,2009. 1~13。
[3] Kim K-J, Chowdhury G, Matsuura T. Low pressure reverse osmosis performances of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) thin film composite membranes: effect of coating conditions and molecular weight of polymer. [J]. J Membr Sci, 2000, 179: 43~52.
[4] Sofrea M L, Nunes S. Composite nanofiltration membranes prepared by in situ polycondensation of amines in a poly(ethylene oxide-b-amide) layer. [J]. J Membr Sci, 1977, 135:179~186.
[5] Ito Y, Ochiai Y, Park Y S. pH-Sensitive Gating by Conformational Change of a Polypeptide Brush Grafted onto a Porous Polymer Membrane. [J]. J Am Chem Soc, 1997, 119: 1619~1623.
[6] Morgan P W. Condensation polymers: By Interfacial and solution methods [M]. New York: John Wiely and Sons, 1965.
[7] Morgan P W. In Encyclopedia of Polymer Science and Engineering [M]. New York: John Wiely and Sons, 1985,8: 221.
[8] Hoffmann K, Tieke B. Layer-by-layer assembled membranes containing hexacyclen-hexaacetic acid and polyethyleneimine N-acetic acid and their ion selective permeation behaviour. [J]. J Membr Sci, 2009, 341: 261~267.
[9] Phillip W A, Neill B O, Rodwogin M, et al. Self-Assembled Block Copolymer Thin Films as Water Filtration Membranes. [J]. Acs Applied Materials & Interfaces, 2010, 2: 847~853.
[10] Morgan P W, Kwolek S L. Interfacial polycondensation. II. Fundamen polymer formation at liquid interfaces. [J]. J Polym Sci, 1959, XL: 299~327.
[11] MacRitchie F. Mechanism of interfacial polycondensation. [J]. Trans Faraday Soc, 1968, 65: 2503~2507.
[12] Karode S K, Kulkarni S S, Suresh A K, et al. New insights into kinetics and thermodynamics of interfacial polymerization.[J]. Chem Eng Sci, 1998, 53: 2649~2663.
[13] Yadav S K, Khilar K C, Suresh A K. Microencapsulation in polyurea shell: kinetics and film structure. [J]. AIChE J, 1996, 42: 2616~2626.
[14] Ji J, Dickson J M, Childs R F, et al. Mathematical model for the formation of thin-film composite membranes by interfacial polymerization: porous and dense films. [J]. Macromolecules, 2000, 33: 624~633.
[15] 于型伟. 界面聚合法制备分离CO2复合膜及成膜过程研究[D]: [博士学位论文]. 天津: 天津大学,2011. 116~119.
[16] Yuan F, Wang Z, Yu X, et al. Visualization of the Formation of Interfacially Polymerized Film by an Optical Contact Angle Measuring Device. [J]. J Phys Chem C, 2012, 116: 11496~11506.
[17] Wamser C C, Gilbert M I. Detection of Surface Functional Group Asymmetry inInterfacially-Polymerized Films by Contact Angle Titrations. [J]. Langmuir, 1992, 8: 1608~1614.
[18] Freger V, Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films. [J]. J Appl Polym Sci, 2003, 88: 1162~-1169.
[19] Pacheco F A, Pinnau I, Reinhard M, et al. Characterization of isolated polyamide thin films of RO and NF membranes using novel TEM techniques. [J]. J Membr Sci, 2010, 358: 51~59.
[20] Coronell O, Marinas B J, and Cahill D G. Depth Heterogeneity of Fully Aromatic Polyamide Active Layers in Reverse Osmosis and Nanofiltration Membranes. [J]. Environ Sci Technol, 2011, 45: 4513~4520.
[21] 俞三传. 界面聚合反渗透复合膜材料及其表面修饰. [J]. 膜科学与技术,2011, 31 (3):172~175.
[22] Zhou Y, Yu S, Gao C, et al. Preparation and characterization of polyamide- urethane thin- film composite membranes. [J]. Desalination, 2005, 180: 189~196.
[23] Liu L, Yu S, Gao C, et al. Study on a novel polyamide- urea reverse osmosis composite membrane (ICIC MPD) ( I ), Preparation and characterization of ICIC MPD membrane. [J]. J Membr Sci, 2006, 281: 88~ 94.
[24] Yu S, Liu M, Gao C, et al. Aromatic-cycloaliphatic polyamide thin- film composite membrane with improved chlorine resistance prepared from m- phenylenediamine-4-methyl and cyclohexane- 1, 3, 5-ricarbonylchlo ride. [J]. J Membr Sci, 2009, 344:155~ 164.
[25] Li L, Zhang S, Zhang X, et al. Polyamide thin film composite membranes prepared from 3,4,5-biphenyl triacyl chloride, 3,3,5,5-biphenyl tetraacyl chloride and m-phenylenediamine. [J]. J Membr Sci, 2007, 289: 258~267.
[26] Li L, Zhang S, Zhang X, et al. Polyamide thin film composite membranes prepared from isomeric biphenyl tetraacyl chloride and m-phenylenediamine. [J]. J Membr Sci, 2008, 315: 20~27.
[27] Li L, Zhang S, Zhang X, et al. Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3’,5,5’-biphenyl tetraacyl chloride and piperazine. [J]. J Membr Sci, 2009, 335: 133~139.
[28] Kwak S Y, Jung S G, and Kim S H. Structure-Motion-Performance Relationship of Flux-Enhanced Reverse Osmosis (RO) Membranes Composed of Aromatic Polyamide Thin Films. [J]. Environ Sci Technol, 2001, 35:4334~4340.
[29] Duan M, Wang Z, Xu J, et al. Influence of hexamethyl phosphoramide on polyamide composite reverse osmosis membrane performance. [J]. Separation and Purification Technology, 2010, 75: 145~155.
[30] Kong C, Kanezashi M, Yamomoto T, et al. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. [J]. J Membr Sci, 2010, 362: 76~80.
[31] Jeong B-H, Hoek E M V, Yan Y, et al. Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes. [J]. J Membr Sci, 2007, 294: 1~7.
[32] Kong C, Shintani T, and Tsuru T. ‘‘Pre-seeding’’-assisted synthesis of a high performance polyamide-zeolite nanocomposite membrane for water purification. [J]. New J Chem, 2010, 34: 2101~2104.
[33] Zhang L, Shi G-Z, Qiu S. Preparation of high-flux thin film nanocomposite reverse osmosis membranes by incorporating functionalized multi-walled carbon nanotubes. [J]. Desalination and Water Treatment, 2011, 34: 19–24.
[34] Tiraferri A, Vecitis C D, and Elimelech M. Covalent Binding of Single-Walled Carbon Nanotubes to Polyamide Membranes for Antimicrobial Surface Properties. [J]. ACS Appl Mater. Interfaces, 2011, 3: 2869~2877.
[35] Junwoo P, Kim C W, Hyun S. Enhancement of Chlorine Resistance in Carbon Nanotube Based Nanocomposite Reverse Osmosis Membranes. [J]. Desalination and Water Treatment, 2010, 15: 198–204.
[36] Kim E-S, Hwang G, El-Din M G, et al. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. [J]. J Membr Sci, 2012,394-395: 37~48.
[37] Park H B, Freeman B D, Zhang Z-B, et al. Highly Chlorine-Tolerant Polymers for Desalination. [J]. Angew Chem Int Ed, 2008, 47: 6019~6024.
[38] Kim Y-J, Lee K-S, Jeong M-H, et al. Highly chlorine-resistant end-group crosslinked sulfonated-fluorinated poly(arylene ether) for reverse osmosis membrane. [J]. J Membr Sci, 2011, 378: 512~519.
[39] Colquhoun H M, Chappell D, Lewis A L, et al. Chlorine tolerant, multilayer reverse-osmosis membranes with high permeate flux and high salt rejection. [J]. J Mater Chem, 2010, 20: 4629–4634.
[40] Chen Z, Ito K, Yanagishita H, et al. Correlation Study between Free-Volume Holes and Molecular Separations of Composite Membranes for Reverse Osmosis Processes by Means of Variable-Energy Positron Annihilation Techniques. [J]. Journal of Physcial Chemistry C, 2011,115: 18055-18060.
[41] Kim S H, Kwak S Y, and Suzuki T. Positron Annihilation Spectroscopic Evidence to Demonstrate the Flux-Enhancement Mechanism in Morphology-Controlled Thin-Film-Composite (TFC) Membrane. [J]. Environ Sci Technol, 2005, 39: 1764-1770.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号