Position:Home >> Abstract

Fabrication and Performance of Cellulose Acetate Membranes for Forward Osmosis
Authors: LI Guoliang1,2,3, WANG Jun1,2,*, ZHAO Changwei1,2, HOU Deyin1,2, LIU Huijuan1,2
Units: (1.Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 2. Beijing Key Laboratory of Industrial Wastewater Treatment and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China)
KeyWords: forward osmosis; cellulose acetate; PET mesh; permeability; chemical resistance; fouling resistance
year,volume(issue):pagination: 2017,37(1):92-99

A polyethylene terephthalate (PET) mesh enhanced cellulose acetate membrane was fabricated via a phase inversion process. The obtained PET mesh embedded membrane shows asymmetric structure with the thickness of 127μm. The mechanical strength is as high as 37.86N. The high hydrophilic membrane has the contact angle of 51.4°, and the porosity is high to 74.2%. The membrane performance shows long term stability after being immersed in the solutions with the pH in the range of 2 to 11. The membrane has well organic fouling resistance and the permeability can be completely recovered by simple cleaning. The performance of the membrane was tested using 0.2mol/L NaCl as the feed solution and 1.5mol/L glucose as the draw solution. The membrane displayed a water flux of 3.78L/(m2•h) and salt rejection of 95.65% in forward osmosis (FO) mode. While in pressure retarded osmosis (PRO) mode, the water flux was 5.34L/(m2•h) and salt rejection 96.25%. The high ratio (0.71) of water flux in FO mode to that in PRO mode indicates that the fabricated membrane has a lower degree of internal concentration polarization(ICP).


作者简介:李国亮(1985-),男,博士研究生,研究方向为膜技术与应用研究。E-mail: glli@yic.ac.cn *联系作者:王军,研究员;电子邮件:junwang@rcees.ac.cn

 [1] Matsuura T. Progress in membrane science and technology for seawater desalination - a review[J]. Desalination, 2001, 134(1-3):47-54.
[2] 蔡巧云, 王磊, 苗瑞, et al. PVDF/EVOH共混膜制备及其抗污染特性的分析[J]. 膜科学与技术, 2015, 35(1):28-34.
[3] Qin J J, Lay W C L, Kekre K A. Recent developments and future challenges of forward osmosis for desalination: a review[J]. Desalination and Water Treatment, 2012, 39(1-3):123-136.
[4] Cornelissen E R, Harmsen D, de Korte K F, et al. Membrane fouling and process performance of forward osmosis membranes on activated sludge[J]. Journal of Membrane Science, 2008, 319(1-2):158-168.
[5] Wang R, Shi L, Tang C Y, et al. Characterization of novel forward osmosis hollow fiber membranes[J]. Journal of Membrane Science, 2010, 355(1-2):158-167.
[6] Chanukya B S, Patil S, Rastogi N K. Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate[J]. Desalination, 2013, 312:39-44.
[7] Boo C, Lee S, Elimelech M, et al. Colloidal fouling in forward osmosis: Role of reverse salt diffusion[J]. Journal of Membrane Science, 2012, 390:277-284.
[8] Parida V, Ng H Y. Forward osmosis organic fouling: Effects of organic loading, calcium and membrane orientation[J]. Desalination, 2013, 312:88-98.
[9] 薛念涛, 潘涛. 正渗透浓差极化与膜污染特征的研究进展[J]. 膜科学与技术, 2015, 35(5):109-113.
[10] Liu L L, Wang D, Wang M, et al. Investigation of the factors influencing the preparation process of cellulose triacetate forward osmosis membrane[J]. Membrane Science and Technology, 2011, 31(1):77-83.
[11] Sairam M, Sereewatthanawut E, Li K, et al. Method for the preparation of cellulose acetate flat sheet composite membranes for forward osmosis-Desalination using MgSO4 draw solution[J]. Desalination, 2011, 273(2-3):299-307.
[12] Wang K Y, Ong R C, Chung T S. Double-Skinned Forward Osmosis Membranes for Reducing Internal Concentration Polarization within the Porous Sublayer[J]. Industrial & Engineering Chemistry Research, 2010, 49(10):4824-4831.
[13] Wei J, Qiu C Q, Tang C Y, et al. Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes[J]. Journal of Membrane Science, 2011, 372(1-2):292-302.
[14] 沈菊李, 郑宏林, 潘窔伊, et al. PVDF中空纤维超滤膜的耐化学性能研究[J]. 水处理技术, 2015, 41(8):44-47,52.
[15] Li G, Li X M, He T, et al. Cellulose triacetate forward osmosis membranes: preparation and characterization[J]. Desalination and Water Treatment, 2013, 51(13-15):2656-2665.
[16] 李雪梅, 关毅鹏, 陈颖, et al. 超/微滤膜耐酸碱腐蚀及氧化性能实验研究[J]. 海洋技术, 2013, 32(3):59-62,77.
[17] Chen S C, Fu X Z, Chung T S. Fouling behaviors of polybenzimidazole (PBI)–polyhedral oligomeric silsesquioxane (POSS)/polyacrylonitrile (PAN) hollow fiber membranes for engineering osmosis processes[J]. Desalination, 2014, 335(1):17-26.
[18] Strathmann H, Kock K, Amar P, et al. The formation mechanism of asymmetric membranes[J]. Desalination, 1975, 16(2):179-203.
[19] McCutcheon J R, Elimelech M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes[J]. Journal of Membrane Science, 2008, 318(1-2):458-466.
[20] Hancock N T, Cath T Y. Solute Coupled Diffusion in Osmotically Driven Membrane Processes[J]. Environmental Science and Technology, 2009, 43(17):6769-6775.
[21] McCutcheon J R, McGinnis R L, Elimelech M. A novel ammonia-carbon dioxide forward (direct) osmosis desalination process[J]. Desalination, 2005, 174(1):1-11.


《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com