Position:Home >> Abstract

Preparation and performance of copoly(phthalazinone biphenyl ether sulfone) hemodialysis membrane
Authors: XU Xiangxian1, ZHANG Shouhai1, LIU Qian1, WANG Zhaoqi1, LIU Bingrong2, JIAN Xigao1
Units: 1. School of Chemical Engineering, Dalian University of Technology, High Performance Polymer Engineering Research Center, Dalian 116024, China; 2. Jiangxi Sanxin Medtec Co., Ltd. Nanchang 330200, China
KeyWords: copoly(phthalazinone biphenyl ether sulfone); hollow fiber membranes; hemodialysis; preparation
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2020,40(5):1-8

Abstract:
 A series of hollow fiber hemodialysis membranes were prepared by phase inversion using copoly (phthalazinone biphenyl ether sulfone) (PPBES) with different content of phthalazinone moieties. The effects of PPBES structure on the thermodynamic stability of spinning solution, spinning solution viscosity, membrane structure and performance were investigated by rotational viscometer, contact angle measuring instrument and scanning electron microscope. The results show that thermodynamic stability of the spinning solution decreased with the increase of the content of phthalazinone moieties, while the viscosity of the spinning solution increased and the hydrophilicity of the membrane improved. The rejection against bovine serum albumin (BSA) for hollow fiber membranes was more than 93%, and the pure water flux was higher than 23.9 L/m2h. The pure water flux and BSA flux of the PPBES6040 membrane were 34.5 L/m2h and 25.5 L/m2h, respectively, and the flux recovery rate (FRR) was 68.4%. The tensile strength of hollow fiber membranes were no less than 6 MPa.

Funds:
辽宁省‘兴辽英才计划’项目(XLYC1802073);中央高校基本科研业务费资助项目(DUT19ZD404)

AuthorIntro:
徐象贤(1995-),男,辽宁大连人,硕士研究生,研究方向为中空纤维血液透析膜,E-mail: xuxiangxian@mail.dlut.edu.cn

Reference:
 [1] Hill N R, Fatoba S T, Oke J L, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis[J]. PLOS One, 2016, 11(7):e0158765.
[2] Mineshima M. The Past, Present and Future of the Dialyzer[J]. Contrib Nephrol, 2015, 185:8-14.
[3] 徐天成, 夏列波, 牟倡骏. 聚砜类血液透析膜材料和结构研究进展[J]. 膜科学与技术, 2018, 38 (1):129-135.
[4] De Smet R, Dhondt A, Eloot S, et al. Effect of the super-flux cellulose triacetate dialyser membrane on the removal of non-protein-bound and protein-bound uraemic solutes[J]. Nephrol Dial Transplant, 2007, 22: 2006 -2012.
[5] Ronco C, Clark W R. Haemodialysis membranes[J]. Nat Rev Nephrol, 2018, 14: 394-410.
[6] Irfan M, Idris A. Overview of PES biocompatible/hemodialysis membranes: PES-blood interactions and modification[J]. Mater Sci Eng C, 2015, 56: 574-592.
[7] Bowry S K, Gatti E, Jörg Vienken. Contribution of polysulfone membranes to the success of convective dialysis therapies[J]. Contrib Nephrol, 2011, 173:110-118.
[8] Nie C, Yang Y, Peng Z, et al. Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes[J]. J Membr Sci, 2017, 528:251-263.
[9] Irfan M, Idris A, Yusof N M, et al. Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes[J]. J Membr Sci, 2014, 467:73-84.
[10] Su B H, Fu P, Li Q, et al. Evaluation of polyethersulfone highflux hemodialysis membrane in vitro and in vivo[J]. J Mater Sci Mater Med, 2008, 19(2):745-751. 
[11] 刘鹏. 杂萘联苯共聚醚砜复合正渗透中空纤维膜研究[D]. 大连: 大连理工大学, 2017.
[12] Han R, Zhang S, Yang D, et al. Preparation and characterization of novel copoly (phthalazinone ether sulfone) ultrafiltration membranes with excellent thermal stability[J]. J Membr Sci, 2010, 358(1-2):142-149.
[13] 步肖曼, 张守海, 薛仁东,等. 聚醚砜与杂萘联苯共聚醚砜共混超滤膜的制备[J]. 膜科学与技术, 2018, 38(06):60-66.
[14] 贾悦, 吕晓龙, 武春瑞,等. 聚醚砜中空纤维血液透析膜的制备与透析性能初步评价[J]. 生物医学工程学杂志, 2010(1):97-102.
[15] Anadão P, Sato L F, Montes R R, et al. Polysulphone/montmorillonite nanocomposite membranes: Effect of clay addition and polysulphone molecular weight on the membrane properties[J]. J Membr Sci, 2014, 455: 187-199.
[16] Barzin J, Feng C, Khulbe K C, et al. Characterization of polyethersulfone hemodialysis membrane by ultrafiltration and atomic force microscopy[J]. J Membr Sci, 2004, 237(1-2):77-85.
[17] 潘振强, 许敏贤, 马晓华, 等. PSf-CA中空纤维血液透析共混膜的制备及性能[J]. 膜科学与技术, 2017, 37(3): 53-61.
[18] 杜民慧, 李建树, 赵长生,等. 聚醚砜中空纤维膜对血液中溶质的清除性能[J]. 四川大学学报(工程科学版), 2002(1):69-71.
[19] 张娟. 聚偏氟乙烯中空纤维血液透析器的研究[C]. 第四届中国膜科学与技术报告会论文集. 中国膜工业协会,北京工业大学,中国蓝星(集团)总公司膜科学与技术编辑部, 2010:454-458.
[20] 俞学敏, 朱丽静, 高爱林, 等. 血液透析膜的制备改性及组件设计[J]. 膜科学与技术, 2015, 35(4):110-122.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号