Position:Home >> Abstract

Development and prospect of hollow fiber hemodialyzer
Authors: Jiemin Zhang, Changjun Mu, Yanan Yu, Peng Dai
Units: R&D Wego Blood Purification Products Co., Ltd., Weihai 264210, China
KeyWords: hemodialysis; membrane; material
ClassificationCode:TQ028.3
year,volume(issue):pagination: 2020,40(5):144-150

Abstract:
With the advancement of hemodialysis membrane performance and instrument technology, the performance of hollow fiber dialyzers were greatly improved. This paper reviewed the history of dialyzer and dialysis membrane. Meanwhile, several methods to increase the efficiency of solute clearances and biocompatibility were discussed in detail. The development trend of membrane materials and dialyzer equipment in the future was prospected.

Funds:
国家科技支撑项目计划(2014BAI11B12)

AuthorIntro:
张洁敏(1989-),女,山东青州市人,中级工程师,硕士研究生,从事血液净化医疗器械研发注册工作,E-mail:jiemin.zhang@wego-healthcare.com

Reference:
[1]Zhang L, Zhao M H, Zuo L, et al. China Kidney Disease Network (CK-NET) 2015 Annual Data Report[J]. Kidney Int Suppl (2011), 2019, 9:e1-e81.
[2]Mineshima M. The past, present and future of the dialyzer[J]. Contrib. Nephrol., 2015, 185:8-14.
[3]Mineshima M. Optimal Design of Dialyzers[J]. Contrib. Nephrol., 2017, 189:204-209.
[4]Sunohara T, Masuda T. Fundamental Characteristics of the Newly Developed ATA™ Membrane Dialyzer[J]. Contrib. Nephrol., 2017, 189:215-221.
[5]Togo K, Yamamoto M, Imai M, et al. Comparison of biocompatibility in cellulose triacetate dialysis membranes with homogeneous and asymmetric structures[J]. Ren Replace Ther, 2018, 4:
[6]Kim T R, Hadidi M, Motevalian S P, et al. Transport Characteristics of Asymmetric Cellulose Triacetate Hemodialysis Membranes[J]. Blood Purif., 2018, 45:46-52.
[7]Tange Y, Takesawa S, Yoshitake S. Asymmetric triacetate membrane keeps high water flux during ultrafiltration: in vitro study[J]. J Artif Organs, 2017, 20:1-4.
[8] Joerg V, Biomedical Membranes and (Bio)Artificial Organs[M]// World Scientific Publishing Co. Pte. Ltd.: Dimitrios Stamatialis, 2018: 35-58.
[9] Bowry S K, Gatti E, Vienken J. Contribution of polysulfone membranes to the success of convective dialysis therapies[J]. Contrib. Nephrol., 2011, 173:110-118.
[10] Cuker A , Cines D B . How I treat heparin-induced thrombocytopenia[J]. Blood, 2012, 119:2209-2218.
[11] Ren X, Xu L, Xu J, et al. Immobilized heparin and its anti-coagulation effect on polysulfone membrane surface[J]. J. Biomater. Sci. Polym. Ed., 2013, 24:1707-1720.
[12] Xiang T, Lu T, Xie Y, et al. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry[J]. Acta Biomaterialia, 2016, 40:162-171.
[13] Mandolfo S, Corradi B, Bucci R, et al. Evaluation of the impact of a new synthetic vitamin E-bonded membrane on anemia and rHuEPO requirement in ESRD patients with central venous catheters: a pilot study[J]. Int. Urol. Nephrol., 2012, 44:1493-1500.
[14] Andrulli S, Filippo S D, Manzoni C, et al. Effect of Synthetic Vitamin E-Bonded Membrane on Responsiveness to Erythropoiesis-Stimulating Agents in Hemodialysis Patients: A Pilot Study[J]. Nephron Clin. Pract., 2010, 115:c82-c89.
[15] Matsumura M, Sekizuka S K, Sano H, et al. Improved management of intradialytic hypotension (IDH) using vitamin E-bonded polysulfone membrane dialyzer[J]. Int. J. Artif. Organs, 2010, 33:147.
[16] Aoun B, Janssen-Lozinska Y, Ulinski T. Effect of vitamin E coated dialyzers on anticoagulation requirement in hemodialyzed children[J]. Saudi J. Kidney Dis. Transpl., 2010, 21:466-470.
[17] Dahe G J, Teotia R S, Kadam S S, et al. The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes[J]. Biomaterials, 2011, 32:352-365.
[18] Igoshi T, Tomisawa N, Hori Y, et al. Polyester polymer alloy as a high-performance membrane[J]. Contrib. Nephrol., 2011, 173:148-155.
[19] Matsuda M, Sato M, Sakata H, et al. Effects of fluid flow on elution of hydrophilic modifier from dialysis membrane surfaces[J]. J Artif Organs, 2008, 11:148-155.
[20] Zhao W, Mou Q, Zhang X, et al. Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach[J]. Eur. Polym. J., 2013, 49:738–751.
[21] Morena M, Jaussent I, Chalabi L, et al. Biocompatibility of heparin-grafted hemodialysis membranes: impact on monocyte chemoattractant protein-1 circulating level and oxidative status[J]. Hemodial Int, 2010, 14:403-410.
[22] Lavaud S, Paris B, Maheut H, et al. Assessment of the heparin-binding AN69 ST hemodialysis membrane: II. Clinical studies without heparin administration[J]. ASAIO J., 2005, 51:348-351.
[23] Laroche G, Marois Y, Guidoin R, et al. Polyvinylidene fluoride (PVDF) as a biomaterial: From polymeric raw material to monofilament vascular suture[J]. J Biomed Mater Res., 1995, 29:1525-1536.
[24] 姜智旭, 贾金兰, 石璐, et al. L-精氨酸改性 PVDF 抗凝血膜的制备及血液相容性研究[J]. 功能材料, 2015, 46:23109-23114.
[25] Zhang Q, Xiaolong L, Qingzhao Z, et al. Flux and Passage Enhancement in Hemodialysis by Incorporating Compound Additive into PVDF Polymer Matrix[J]. Membranes, 2016, 6:45-60.
[26] Davenport A. Membrane designs and composition for hemodialysis, hemofiltration and hemodialfiltration: past, present and future[J]. Minerva Urol. Nefrol., 2010, 62:29-40.
[27] Ronco C, Ballestri M, Brendolan A. New developments in hemodialyzers[J]. Blood Purif., 2000, 18:267-275.
[28] Shinaberger J H, Miller J H,Gardner P W. Erythropoietin alert: risks of high hematocrit hemodialysis[J]. ASAIO Trans., 1988, 34:179-184.
[29] Ronco C, Bowry S K, Brendolan A, et al. Hemodialyzer: From macro-design to membrane nanostructure; the case of the FX-class of hemodialyzers[J]. Kidney Int., 2002, 61:S126-S142.
[30] Yamamoto K, Matsuda M, Hirano A, et al. Computational evaluation of dialysis fluid flow in dialyzers with variously designed jackets[J]. Artif. Organs, 2009, 33:481-486.
[31] Danilo Barros Donato A B-d-F, Carina Zweigart, Michael Kolb, Sunny Eloot, Markus Storr, Bernd Krause, Ken Leypoldt, Patrick Segers. Optimization of dialyzer design to maximize solute removal with a two-dimensional transport model[J]. J. Membr. Sci, 2017, 541:519-528.
[32] Rangel A V, Kim J C, Kaushik M, et al. Backfiltration: past, present and future[J]. Contrib. Nephrol., 2011, 175:35-45.
[33] Mineshima M, Ishimori I, Ishida K, et al. Effects of internal filtration on the solute removal efficiency of a dialyzer[J]. ASAIO J., 2000, 46:456-460.
[34] Mineshima M. Estimation of Internal Filtration Flow Rate in High-Flux Dialyzers by Doppler Ultrasonography[J]. Contrib. Nephrol., 2011, 168:153-161.
[35] Gondouin B, Hutchison C A. High cut-off dialysis membranes: current uses and future potential[J]. Adv. Chronic Kidney Dis., 2011, 18:180-187.
[36] Boschetti-de-Fierro A, Beck W, Hildwein H, et al. Membrane Innovation in Dialysis[J]. Contrib. Nephrol., 2017, 191:100-114.
[37] Boschetti-de-Fierro A, Voigt M, Storr M, et al. Extended characterization of a new class of membranes for blood purification: the high cut-off membranes[J]. Int. J. Artif. Organs, 2013, 36:455-463.
[38] Premru V, Kova? J, Buturovi?-Ponikvar J, et al. High cut-off membrane hemodiafiltration in myoglobinuric acute renal failure: a case series[J]. Ther. Apher. Dial., 2011, 15:287-291.
[39] Boschetti-de-Fierro A, Voigt M, Storr M, et al. MCO membranes: enhanced selectivity in high-flux class[J]. Sci. Rep., 2015, 5:18448.
[40] Ronco C. The Rise of Expanded Hemodialysis[J]. Blood Purif., 2017, 44:I-VIII.
[41] Kirsch A H, Lyko R, Nilsson L G, et al. Performance of hemodialysis with novel medium cut-off dialyzers[J]. Nephrol. Dial. Transplant., 2017, 32:165-172.
[42] Armignacco P, Lorenzin A, Neri M, et al. Wearable devices for blood purification: principles, miniaturization, and technical challenges[J]. Semin Dial, 2015, 28:125-130.
[43] Van Gelder M K, Mihaila S M, Jansen J, et al. From portable dialysis to a bioengineered kidney[J]. Expert Rev. Med. Devices, 2018, 15:323-336.
[44] Gura V, Rivara M B, Bieber S, et al. A wearable artificial kidney for patients with end-stage renal disease[J]. JCI Insight, 2016, 1:
[45] Humes H D, Buffington D, Westover A J, et al. The bioartificial kidney: current status and future promise[J]. Pediatr. Nephrol., 2014, 29:343-351.
[46] Chevtchik N V, Fedecostante M, Jansen J, et al. Upscaling of a living membrane for bioartificial kidney device[J]. Eur. J. Pharmacol., 2016, 790:28-35.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号