Position:Home >> Abstract

Optimization of Removal Heavy Metal Ions from High-salt Wastewater by Nanofiltration based on Response Surface Methodology
Authors: LI Yaning1,2, HAO Yachao1,LI Liang1,ZHANG Chengkai1,YUAN Junsheng2,FU Chunming1,XIAO Caiying1,HAO Runqiu1,ZHANG Chengkai1,LIU Qi1
Units: 1. CNOOC Tianjin Chemical Research and Design Institute Co., Ltd.,,Tianjin 300384 ; 2. Hebei University of Technology, Tianjin 300130
KeyWords: response surface methodology (RSM); heavy metal ions depth removal; high-salt wastewater
ClassificationCode:x789
year,volume(issue):pagination: 2020,40(6):111-117

Abstract:
 Response surface methodology (RSM) was used to study the process of deep removal of heavy metal ions from high-salt coal-based oil-making wastewater by nanofiltration. The fitting results showed that NF90-2540 has the best interception of heavy metal ions and the retention rate can reach 97.5% under the conditions of C(EDTA):C(M2+)= 1.0:1.1、osmotic pressure= 1.89 MPa、pH= 4.1、feed flow rate= 298.9 L/h. Through analysis of the three-dimensional perspective and contour plots in the response surface methodology, it can be seen that when complexing nanofiltration intercepts heavy metal ions in wastewater, it is mainly affected by the steric hindrance of the nanofiltration membrane. The interaction between complexing agent and pH was significant, indicating that the complexation of heavy metal ions with complexing agents is mainly affected by pH. The interaction of other factors was not significant.

Funds:
国家重大专项(2017ZX07017-002-01), 国家重大专项(2017ZX07017-002-02)

AuthorIntro:
李亚宁(1992-),男,河北衡水,助理工程师,硕士研究生,研究方向为工业水处理,E-mail:1582827623@qq.com

Reference:
[1] 李信. 化学及沉淀法处理五金电镀厂废水工程技术研究[D]. 江西, 南昌大学, 2014.
[2] Fu F, Wang Q. Removal of heavy metal ions from wastewaters: a review.[J]. Journal of Environmental Management, 2011, 92(3):407-18.
[3] 唐林. 废水中低浓度铬镍的去除和铬还原过程ORP的研究[D]. 上海, 华东理工大学, 2019.
[4] 杨梖, 白雪, 顾海鑫. 磁性吸附材料的制备及其在污水处理中的应用[J]. 环境工程, 2015, 33(4):25-29.
[5] 沈倩,徐孙杰,等. 含重金属废水膜分离技术的应用进展[J]. 山东化工,2019,48(05):59-65
[6] 赵丽芹. 超滤-反渗透应急饮用水处理试验研究[D]. 浙江, 浙江大学, 2019.
[7] 宫奕波. 混凝吸附-络合超滤组合工艺对突发性镐污染水的去除效能研究[D]. 黑龙江, 哈尔滨工业大学, 2019.
[8] 刘硕, 李振山, 汪成运. 酒石酸钾钠(PST)对纳滤处理重金属废水的强化效果[J]. 环境工程报, 2014, 8(4):1290-1291.
[9] Murthy Z V P, Choudhary A. Separation of cerium from feed solution by nanofiltration[J]. Desalination, 2011, 279(1–3):428-432.
[10] 白玲, 冷婧, 常娟. EDTA对纳滤铅铜混合离子的去除效果[J]. 膜科学与技术, 2016, 36(06):119-125.
[11] 李莉, 张赛, 何强,等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8):41-45.
[12] Bezerra M A, Santelli R E, Oliveira E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta, 2008, 76(5):965-77.
[13] 中华人民共和国国家环境保护局, 中国国家环境保护局科技标准司. GB8798-1996,污水综合排放标准[S]. 北京: 中国环境科学出版社, 1996.
[14] Zinatizadeh A A, Mohamed A R, Abdullah A Z, et al. Process modeling and analysis of palm oil mill effluent treatment in an up-flow anaerobic sludge fixed film bioreactor using response surface methodology (RSM)[J]. Water Research, 2006, 40(17):3193-208.
[15] Szymczyk A, Fievet P. Investigating transport properties of nanofiltration membranes by means of a steric, electric and dielectric exclusion model[J]. Journal of Membrane Science, 2005, 252(1–2):77-88.
[16] Mohammad A W, Teow Y H, Ang W L, et al. Nanofiltration membranes review: Recent advances and future prospects[J]. Desalination, 2015, 356:226-254.
[17] Gomes S, Cavaco S A, Quina M J, et al. Nanofiltration process for separating Cr(III) from acid solutions: Experimental and modelling analysis[J]. Desalination, 2010, 254(1):80-89.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号