Position:Home >> Abstract

Residual aluminum components and their contribution to nanofiltration membrane fouling in natural water
Authors: Yuan Ziyi1,2, Li Yunfei1, Li Tianyu3, Zhang Jianfeng2, Wang xiaomao2
Units: 1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China; 2. School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; 3. Beijing Origin Water Membrane Technology Co., Ltd., Beijing, 102206, China
KeyWords: drinking water treatment; nanofiltration; residual aluminum; membrane fouling
ClassificationCode:TU991.2
year,volume(issue):pagination: 2021,41(6):10-17

Abstract:
  Although residual aluminum has been recognized one of the key foulants contributing to nanofiltration membrane fouling in drinking water treatment, the degree to which various residual aluminum components influence membrane fouling is unknown. In this study, the species distribution of residual aluminum in the nanofiltration influent was manipulated in order to analyze the effect of residual aluminum's degree of polymerization and complexation with organic matter on membrane fouling. Results showed that even when the concentrations of medium and high polymeric aluminum (Alb/Alc) were increased to 200 μg/L, they had virtually little impact on membrane fouling, whereas the concentration of oligomeric aluminum (Ala) in the range of 50 μg/L could significantly aggravate the membrane fouling rate. In comparison to the concentration of Ala, the complex stability of Ala and natural organic matter (NOM) was shown to have a higher effect on membrane fouling. As a result, the most significant residual aluminum form that aggravated the fouling of nanofiltration membranes was thus the more stable Ala-NOM.

Funds:
国家自然科学基金项目(51978367)

AuthorIntro:
袁梓屹(1996-),男,陕西汉中人,硕士,主要研究方向为纳滤膜污染控制技术,E-mail:510793028@qq.com

Reference:
 [1] 赵阳莹. 新型无机-有机复合纳滤膜截留和抗膜污染机理 [D]; 清华大学, 2019.
[2] 赵长伟, 唐文晶, 贾文娟, et al. 纳滤去除水中新兴污染物的研究进展 [J]. 膜科学与技术, 2021, 41(01): 144-51.
[3] 黄斌, 魏春海, 瞿芳术, et al. 反渗透工艺进水污染指数的研究进展 [J]. 膜科学与技术, 2020, 40(02): 146-55.
[4] Kimura M, Matsui Y, Kondo K, et al. Minimizing residual aluminum concentration in treated water by tailoring properties of polyaluminum coagulants [J]. Water research, 2013, 47(6): 2075-84.
[5] Yang Z, Gao B, Yue Q. Coagulation performance and residual aluminum speciation of Al2 (SO4) 3 and polyaluminum chloride (PAC) in Yellow River water treatment [J]. Chemical Engineering Journal, 2010, 165(1): 122-32.
[6] Ye C, Wang D, Shi B, et al. Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294(1-3): 163-73.
[7] Shu-xuan D, Hui X, Feng X, et al. Effects of Al species on coagulation efficiency, residual Al and floc properties in surface water treatment [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 459: 14-21.
[8] Feng C, Zhao S, Bi Z, et al. Speciation of prehydrolyzed Al salt coagulants with electrospray ionization time-of-flight mass spectrometry and 27Al NMR spectroscopy [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 392(1): 95-102.
[9] Tang H, Xiao F, Wang D. Speciation, stability, and coagulation mechanisms of hydroxyl aluminum clusters formed by PACl and alum: A critical review [J]. Advances in Colloid and Interface Science, 2015, 226: 78-85.
[10] Furrer G, Gfeller M, Wehrli B. On the chemistry of the Keggin Al13 polymer: Kinetics of proton-promoted decomposition [J]. Geochimica et cosmochimica acta, 1999, 63(19-20): 3069-76.
[11] Srinivasan P, Viraraghavan T, Subramanian K. Aluminium in drinking water: An overview [J]. Water Sa, 1999, 25(1): 47-55.
[12] Van Benschoten J E, Edzwald J K. Measuring aluminum during water treatment: methodology and application [J]. Journal‐American Water Works Association, 1990, 82(5): 71-8.
[13] Ma B, Hu C, Wang X, et al. Effect of aluminum speciation on ultrafiltration membrane fouling by low dose aluminum coagulation with bovine serum albumin (BSA) [J]. Journal of Membrane Science, 2015, 492: 88-94.
[14] Browne B, Driscoll C. pH-dependent binding of aluminum by a fulvic acid [J]. Environmental science & technology, 1993, 27(5): 915-22.
[15] Teng J, Chen Y, Ma G, et al. Membrane fouling by alginate in polyaluminum chloride (PACl) coagulation/microfiltration process: Molecular insights [J]. Separation and Purification Technology, 2020, 236: 116294.
[16] Letterman R D, Driscoll C T. Survey of residual aluminum in filtered water [J]. Journal‐American Water Works Association, 1988, 80(4): 154-8.
[17] Gabelich C J, Chen W R, Yun T I, et al. The role of dissolved aluminum in silica chemistry for membrane processes [J]. Desalination, 2005, 180(1-3): 307-19.
[18] 王智, 夏建中, 王小亻毛. 纳滤膜截留特性与膜基本特征之间关系的研究 [J]. 环境科学学报, 2018, 38(05): 1843-50.
[19] Guo Y, Li T-y, Xiao K, et al. Key foulants and their interactive effect in organic fouling of nanofiltration membranes [J]. Journal of Membrane Science, 2020, 610: 118252.
[20] Weber J H, Wilson S A. The isolation and characterization of fulvic acid and humic acid from river water [J]. Water research, 1975, 9(12): 1079-84.
[21] Tang C, He Z, Zhao F, et al. Effects of cations on the formation of ultrafiltration membrane fouling layers when filtering fulvic acid [J]. Desalination, 2014, 352: 174-80.
[22] Hong S, Elimelech M. Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes [J]. Journal of membrane science, 1997, 132(2): 159-81.
[23] Mallevialle J, Anselme C, Marsigny O. Effects of humic substances on membrane processes [J]. 1989.
[24] Liu D, Cabrera J, Zhong L, et al. Using loose nanofiltration membrane for lake water treatment: A pilot study [J]. Frontiers of Environmental Science & Engineering, 2021, 15(4): 1-11.
[25] Jiang J-Q. The role of coagulation in water treatment [J]. Current Opinion in Chemical Engineering, 2015, 8: 36-44.
[26] Tomperi J, Pelo M, Leiviskä K. Predicting the residual aluminum level in water treatment process [J]. Drinking Water Engineering and Science, 2013, 6(1): 39-46.
[27] Matilainen A, Vepsäläinen M, Sillanpää M. Natural organic matter removal by coagulation during drinking water treatment: A review [J]. Advances in colloid and interface science, 2010, 159(2): 189-97.
[28] Chen Z, Luan Z, Jia Z, et al. Study on the hydrolysis/precipitation behavior of Keggin Al13 and Al30 polymers in polyaluminum solutions [J]. Journal of Environmental Management, 2009, 90(8): 2831-40.
[29] Yan M, Wang D, Ni J, et al. Mechanism of natural organic matter removal by polyaluminum chloride: effect of coagulant particle size and hydrolysis kinetics [J]. Water research, 2008, 42(13): 3361-70.
[30] Masion A, Vilgé-Ritter A, Rose J, et al. Coagulation-flocculation of natural organic matter with Al salts: Speciation and structure of the aggregates [J]. Environmental Science & Technology, 2000, 34(15): 3242-6.
[31] Jiao R, Xu H, Xu W, et al. Influence of coagulation mechanisms on the residual aluminum–The roles of coagulant species and MW of organic matter [J]. Journal of Hazardous Materials, 2015, 290: 16-25.
[32] Yan M, Wang D, Qu J, et al. Relative importance of hydrolyzed Al (III) species (Ala, Alb, and Alc) during coagulation with polyaluminum chloride: a case study with the typical micro-polluted source waters [J]. Journal of Colloid and Interface Science, 2007, 316(2): 482-9.
[33] Zhao H, Liu H, Qu J. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species [J]. Journal of Colloid and Interface Science, 2009, 330(1): 105-12.
[34] Zhao H, Liu H, Hu C, et al. Effect of aluminum speciation and structure characterization on preferential removal of disinfection byproduct precursors by aluminum hydroxide coagulation [J]. Environmental science & technology, 2009, 43(13): 5067-72.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号