Position:Home >> Abstract

Research on molecule simulation force field of MOFs based on structural flexibility
Authors: XU Chunhua, WANG Xiumin
Units: 1College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; 2College of Materials Science and Engineering, China University of Petroleum (East China
KeyWords: metal-organic framework; flexibility; dynamic simulation; force field; aperture
ClassificationCode:O641-3
year,volume(issue):pagination: 2022,42(1):98-103

Abstract:
 The molecular simulation study on the structural flexibility of metal organic framework materials (MOFs) has important guiding significance for the accurate prediction of experimental results. Molecular dynamics simulation methods are used to study the effects of different charge states (No charge, Qeq charge and DDEC charge) under three different force fields (Dreiding、UFF and UFF4MOF force field) on the flexibility of zeolite imidazolate framework materials (ZIFs). And by screening the precise flexible force field, the influence of the force field on the aperture distribution of the metal organic frame material is explored. The results show that the accuracy of DDEC charge distribution model under UFF force field is the highest considering the maximum free sphere diameter df of ZIF-8. Considering the maximum diameter dif of ZIF-8, the charge-free distribution model of UFF force field has the highest accuracy. The results provide a more accurate force field for further study on the membrane separation performance of ZIF-8, which can be used to predict the material properties. The difference in accuracy between them and the influence of restrictions on bond length and bond angle around Zn on different force field models will be discussed in the follow-up study.

Funds:

AuthorIntro:
徐春华(1967-),女,江苏宜兴人,高级实验师,主要研究方向:计算机应用

Reference:
 [1]Anderson H. C. Molecular dynamics simulations at constant pressure and/or temperature[J]. J. Chem. Phys., 1980, 72(4): 2384-2393.
[2]Mayo S. L.; Olafson B. D.; Goddard W. A.; et al. DREIDING: A generic force field for molecular simulations[J]. J. Phys. Chem., 1990, 94: 8897-8909.
[3]Hu Z.; Chen Y.; Jiang J. Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination: insight from molecular simulation[J]. J. Chem. Phys., 2011, 134(13): 134705.
[4]Li J.-R.; Sculley J.; Zhou H.-C. Metal-organic frameworks for separations[J]. Chem. Rev., 2011, 112: 869-932.
[5]Furukawa H.; Cordova K. E.; O’Keeffe M.; et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341: 1230444.
[6]Huck J. M.; Lin L.-C.; Berger A. H.; et al. Evaluating different classes of porous materials for carbon capture[J]. Energ. Environ. Sci., 2014, 7(12): 4132-4146.
[7]Zhao X.; Wang Y.; Li D.-S.; et al. Metal-organic frameworks for separation[J]. Adv. Mater., 2018, 30: 1705189
[8]Denny M. S.; Moreton J. C.; Benz L.; et al. Metal–organic frameworks for membrane-based separations[J]. Nat. Rev. Mater., 2016, 1(12): 16078.
[9]Li B.; Chen B. Fine-tuning porous metal-organic frameworks for gas separations at will[J]. Chem-US., 2016, 1(5): 669-671.
[10]O’Keeffe M.; Yaghi O M. Deconstructing the crystal structures of metal-frameworks and related materials into their underlying nets[J]. Chem. Rev., 2012, 112(2): 675-702.
[11]Ma X.; Kumar P.; Mittal N.; et al. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation[J]. Science, 2018, 361(6406): 1008-1011.
[12]Hayashi H.; Cote A. P.; Furukawa H.; et al. Zeolite A imidazolate frameworks[J]. Nat. Mater., 2007, 6(7): 501-506.
[13]Li K.; Olson D. H.; Seidel J.; et al. Zeolitic imidazolate frameworks for kinetic separation of propane and propene[J]. J. Am. Chem. Soc., 2009,131(30): 10368-10369.
[14]Gucuyener C.; Bergh J. V. D.; Gascon J.; et al. Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism[J]. J. Amer. Chem. Soc.,2010, 132(50): 17704-17706.
[15]Zhang K.; Gupta K. M.; Chen Y.; et al. Biofuel purification in GME zeolitic-imidazolate frameworks: from ab initio calculations to molecular simulations[J]. AlChE J.,2015, 61(9): 2763-2775.
[16]Zhu Y.; Gupta K. M.; Liu Q.; et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes[J]. Desalination, 2016, 385: 75-82.
[17]Castillo J. M.; Vlugt T. J. H.; Calero S. Molecular simulation study on the separation of xylene isomers in MIL-47 metal-organic frameworks[J]. J. Phys. Chem. C, 2009, 113(49): 20869-20874.
[18]Granato M. A.; Martins V. D.; Ferreira A. F. P.; et al. Adsorption of xylene isomers in MOF UiO-66 by molecular simulation[J]. Micropor Mesopor Mat., 2014, 190: 165-170.
[19]Park J.; Howe J. D.; Sholl D. S. How reproducible are isotherm measurements in metal-organic frameworks[J]. Chem. Mater., 2017, 29(24): 10487-10495.
[20]Daglar H.; Keskin S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations[J]. Coord. Chem. Rev., 2020, 422: 213470.
[21]Gee J. A.; Sholl D. S. Effect of framework flexibility on C8 aromatic adsorption at high loadings in metal-organic frameworks[J]. J. Phys. Chem. C, 2016, 120(1): 370-376.
[22]Chokbunpiam T.; Fritzsche S.; Caro J.; et al. Importance of ZIF-90 lattice flexibility on diffusion, permeation, and lattice structure for an adsorbed H2/CH4 gas mixture: a re-examination by gibbs ensemble monte carlo and molecular dynamics simulations[J]. J. Phys. Chem. C, 2017, 121(19): 10455-10462.
[23]Zhang L.; Hu Z.; Jiang J. Sorption-induced structural transition of zeolitic imidazolate framework-8: a hybrid molecular simulation study[J]. J. Am. Chem. Soc., 2013, 135(9): 3722-3728.
[24]Abouelnasr M K F, Smit B. Diffusion in confinement: kinetic simulations of self- and collective diffusion behavior of adsorbed gases[J]. Phys. Chem. Chem. Phys., 2012, 14(33): 11600-11609.
[25]Verploegh R J, Nair S, Sholl D S. Temperature and Loading-Dependent Diffusion of Light Hydrocarbons in ZIF-8 as Predicted Through Fully Flexible Molecular Simulations[J]. J. Am. Chem. Soc., 2015, 137(50): 15760-15771.
[26]Nazarian D.; Camp J. S.; Sholl D. S. A comprehensive set of high-quality point charges for simulations of metal-Organic frameworks[J]. Chem. Mater., 2016, 28(3): 785-393.
[27]Boyd P. G.; Moosavi S. M.; Witman M.; et al. Force-field prediction of materials properties in metal-organic frameworks[J]. J. Phys. Chem. Lett., 2017, 8(2): 357-363.
[28]Witman M.; Ling S.; Jawahery S.; et al. The influence of intrinsic framework flexibility on adsorption in nanoporous materials[J]. J. Am. Chem. Soc., 2017, 139(15): 5547-5557.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号