Position:Home >> Abstract

Preparation and Study of Polyvinylidene Fluoride Graft Copolymer Fiber Membrane for Oil-Water Separation
Authors: XU Fei, YOU Meng, ZHANG Shuyou, WANG Hua, MENG Jianqiang
Units: State Key Laboratory of Separation Membrane and Process, School Materials Science and Engineering, Tiangong University, Tianjin, 300387, China
KeyWords: PVDF; graft copolymer; electrospinning; oil/water separation; antifouling
ClassificationCode:TB34
year,volume(issue):pagination: 2022,42(1):88-97

Abstract:
 The PVDF graft copolymer was prepared by grafting oligoethylene glycol monomethyl ether (OEGMA) onto the PVDF via atom transfer radical polymerization (ATRP). The hydrophilic PVDF-g-PEGMA-w fibrous membrane was prepared using electrospinning technology containing a heat treatment process, to improve the hydrophilicity. The results showed that water contact angle of the PVDF-g-POEGMA membrane decreased from 85 o to 0° within 5 s, the tensile strength was 2.7 MPa, and the oil intrusion pressure was 3.01 kPa. During the “dead-end” filtration, the water flux of filtering the dispersed oil mixture reached up to 11,630 L/(m2h) under the gravity-driven condition. During cross-flow oil/water emulsion filtration, the PVDF-g-PEGMA-w membrane exhibited a high water flux and a separation efficiency higher than 99% for several oil/water emulsions. After 3 cycles of fouling tests, the flux recovery rate of the modified membrane remained above 91%, exhibiting excellent antifouling property.

Funds:
国家自然科学基金(21875162,22075206).(一般不接受无项目资助的论文,除非具有重大学术价值.)

AuthorIntro:
许飞(1996),男,辽宁锦州人,硕士生,油水分离膜研究

Reference:
 [1] Peterson C H, Rice S D, Rice J W, et al. Long-term ecosystem response to the exxon valdez oil spill[J]. Science, 2003, 302:2082-2086.
[2] Tai M H, Gao P, Tan B Y L, et al. Highly efficient and flexible electrospun carbon-silica nanofibrous membrane for ultrafast gravity-driven oil-water separation[J]. ACS Appl Mater Interfaces, 2014, 6(12):9393-9401.
[3] Huang Q X, Mao F Y, Han X, et al. Migration of emulsified water droplets in petroleum sludge during centrifugation[J]. Energy Fuels, 2014, 28(8):4918-4924.
[4] Zhang W B, Shi Z, Zhang F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsifieds with high flux[J]. Adv Mater, 2013, 25(14):2071-2076.
[5] Zhu Y Z, Xie W, Zhang F, et al. Superhydrophilic in-situ-cross-linked zwitterionic polyelectrolyte/PVDF-blend membrane for highly efficient oil/water emulsified separation[J]. ACS Appl Mater Interfaces, 2017, 9(11):9603-9613.
[6] Zhou X Y, Zhang Z Z, Xu X H, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation[J]. ACS Appl Mater Interfaces, 2013, 5(15):7208-7214.
[7] Feng L, Zhang Z Y, Mai Z H, et al. A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water[J]. Angew Chem Int Ed, 2004, 116(15):2046-2048.
[8] Zhang F, Zhang W B, Shi Z, et al. Nanowire-haired inorganic membranes with superhydrophilicity and underwater ultralow adhesive superoleophobicity for high-efficiency oil/water separation[J]. Adv Mater, 2013, 25(30):4192-4198.
[9] Zhang L, Lin Y Q, Wu H C, et al. An ultrathin in situ silicification layer developed by an electrostatic attraction force strategy for ultrahigh-performance oil–water emulsion separation[J]. J Mater Chem A, 2019, 7:24569-24582.
[10] 杨思民,王建强,刘富.油水分离膜研究进展[J]. 膜科学与技术, 2019, 39(03):132-141.
[11] Zargnami S, Mohammadi T, Sadrzadeh M, et al. Superhydrophilic and underwater superoleophobic membranes-A review of synthesis methods[J]. Prog Polym Sci, 2019, 98:101166.
[12] Fan Z Y, Zhao Y L, Zhu X Y, et al. Folic acid modified electrospun poly(vinyl alcohol)/polyethyleneimine nanofibers for cancer cell capture applications[J]. Chin J Polym Sci, 2016, 34(6):755-765.
[13] Cheng B W, Li Z J, Li Q X, et al. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation[J]. J Membr Sci, 2017, 534:1-8.
[14] Su C L, Li Y P, Dai Y Z, et al. Fabrication of three-dimensional superhydrophobic membranes with high porosity via simultaneous electrospraying and electrospinning[J]. Mater Lett, 2016, 170:67-71.
[15] Ma W j, Zhang Q, Hua D W, et al. Electrospun fibers for oil-water separation[J]. RSC Adv. 2016, 6 (16), 12868-12884.
[16] Lee M W, An S, Latthe S S, et al. Electrospun polystyrene nanofiber membrane with superhydrophobicity and superoleophilicity for selective separation of water and low viscous oil[J]. ACS Appl Mater Interfaces, 2013, 5(21):10597-10604.
[17] Tang Z H, Wei J, Yung L, et al. UV-cured poly(vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds[J]. J Membr Sci, 2009, 328(1-2):1-5.
[18] Liu Z J, Wang H Y, Wang E Q, et al. Superhydrophobic poly(vinylidene fluoride) membranes with controllable structure and tunable wettability prepared by one-step electrospinning[J]. Polymer, 2016, 82:105-113.
[19] Hong S K, Bae S, Jeon H, et al. An underwater superoleophobic nanofibrous cellulosic membrane for oil/water separation with high separation flux and high chemical stability[J]. Nanoscale, 2018, 10:3037-3045.
[20] Chakrabarty B, Ghoshal A K, Purkait M K. Ultrafiltration of stable oil-in-water emulsified by polysulfone membrane[J]. J Membr Sci, 2008, 325(1):427-437.
[21] Zhang J Q, Pan X L, Xue Q Z, et al. Antifouling hydrolyzed polyacrylonitrile/graphene oxide membrane with spindle-knotted structure for highly effective separation of oil-water emulsified[J]. J Membr Sci, 2017, 532:38-46.
[22] Liao Y, Tian, M, Wang R. A high-performance and robust membrane with switchable super-wettability for oil/water separation under ultralow pressure[J]. J Membr Sci, 2017, 543:123-132. 
[23] Ge J L, Zhang J C, Wang F, et al. Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation[J]. J Mater Chem A, 2017, 5:497-502.
[24] Obaid M, Mohamed H O, Yasin A S, et al. Under-oil superhydrophilic wetted PVDF electrospun modified membrane for continuous gravitational oil/water separation with outstanding flux[J]. Water Res, 2017, 123:524-535.
[25] Wang X F, Zhang K, Yang Y, et al. Development of hydrophilic barrier layer on nanofibrous substrate as composite membrane via a facile route[J]. J Membr Sci, 2010, 356(1):110-116.
[26] Ge J L, Zong D D, Jin Q, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsion[J]. Adv Funct Mater, 2018, 28(10):1705051-1705061.
[27] Ma W J, Guo Z F, Zhao J T, et al. Polyimide/cellulose acetate core/shell electrospun fibrous membranes for oil-water separation[J]. Sep Purif Technol, 2017, 177:71-85.
[28] Liu B C, Chen C, Li T, et al. High performance ultrafiltration membrane composed of PVDF blended with its derivative copolymer PVDF-g-POEGMA[J]. J Membr Sci, 2013, 445:66-75.
[29] Hester J F, Banerjee P, Won Y Y, et al. ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives[J]. Macromolecules, 2002, 35(20):7652-7661.
[30] Wu J D, Ding Y J, Wang J Q, et al. Facile fabrication of nanofiber- and micro/nanosphere-coordinated PVDF membrane with ultrahigh permeability of viscous water-in-oil emulsions[J]. J Mater Chem A, 2018, 6:7014-7020.
[31] Pan Y, Zhang L J, Li Z J, et al. Hierarchical porous membrane via electrospinning PIM-1 for micropollutants removal[J]. Appl Surf Sci, 2018, 443:441-451.
[32] Cao Z P, Hao T Y, Wang P, et al. Surface modified glass fiber membranes with superior chemical and thermal resistance for O/W separation[J]. Chem Eng J, 2017, 309:30-40.
[33] Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on Poly(vinylidene fluoride) membranes via surface segregation[J]. Macromolecules, 1999, 32(5):1643-1650.
[34] Li J J, Zhu L T, Luo Z H. Electrospun fibrous membrane with enhanced switchable oil/water wettability for oily water separation[J]. Chem Eng J, 2016, 287:474-481.
[35] Fang W Y, Liu L B, Guo G L. Tunable wettability of electrospun polyurethane/silica composite membranes for effective separation of water-in-oil and oil-in-water emulsions[J]. Chem -Eur J, 2017, 23(47):11253-11260.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号