Position:Home >> Abstract

Research Progress of Iptycene-based Microporous Polymers for Membrane-mediated Gas Separation
Authors: LIU Yitao, CAI Zhili, SHAN Linglong, LUO Shuangjiang
Units: 1 Institute of Industrial Chemistry and Energy Technology, School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China. 2 Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, Chin
KeyWords: gas separation membrane; microporous polymer; triptycene; pentiptycene; free volume
ClassificationCode:TQ 028
year,volume(issue):pagination: 2022,42(1):145-154

Abstract:
 In the field of membrane-mediated gas separation, traditional polymeric membrane materials are often challenged by a trade-off between gas permeability and selectivity, thus novel polymeric membrane materials with precise molecule design and high gas separation performance are highly demanded. This paper reviewed the research progress of novel iptycene-based polymeric gas separation membranes in the past decades. In particular, the membrane structure, structure-performance relationship and gas separation properties of iptycene-based polyimides, polybenzoxazoles and polymers of intrinsic microporosity are summarized and discussed. This paper will provide guidance for the design and development of the next generation of high performance polymeric gas separation membranes.

Funds:
中国科学院洁净能源创新研究院合作基金“新型高性能CO2分离膜制备及天然气脱碳过程”(DNL201917);北京市科技新星计划“杂环工程聚合物膜的制备及在合成气脱碳中的应用”(Z191100001119107);中国科学院国际合作伙伴计划“聚离子液体气体分离膜制备及高选择性H2/CO2分离新过程”(122111KYSB20200035)。

AuthorIntro:
刘懿韬(1994年6月生),女,河北张家口人,硕士研究生,研究方向:膜材料设计与传质机理

Reference:
 [1] D.S. Sholl, R.P. Lively, Seven chemical separations to change the world, Nature, 532 (2016) 435-437.
[2] 董子丰, 气体膜分离技术在石油工业中的应用, 膜科学与技术, 3 (2000) 38-43.
[3] Y. Wang, X. Ma, B.S. Ghanem, F. Alghunaimi, I. Pinnau, Y. Han, Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations, Mater. Today Nano, 3 (2018) 69-95.
[4] 徐仁贤, 气体分离膜应用的现状和未来, 膜科学与技术, 23 (2003) 123-128.
[5] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62 (1991) 165-185.
[6] R.L. Burns, W.J. Koros, Defining the challenges for C3H6/C3H8 separation using polymeric membranes, J. Membr. Sci., 211 (2003) 299-309.
[7] L.M. Robeson, The upper bound revisited, J. Membr. Sci., 320 (2008) 390-400.
[8] C. Zhang, Y. Dai, J.R. Johnson, O. Karvan, W.J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations, J. Membr. Sci., 389 (2012) 34-42.
[9] R. Swaidan, B. Ghanem, I. Pinnau, Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations, ACS Macro Lett., 4 (2015) 947-951.
[10] B. Comesaña-Gándara, J. Chen, C.G. Bezzu, M. Carta, I. Rose, M.-C. Ferrari, E. Esposito, A. Fuoco, J.C. Jansen, N.B. McKeown, Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity, Energy Environ. Sci., 12 (2019) 2733-2740.
[11] 威廉·卡洛斯, 膜领域所面临的机遇和挑战——侧重于气体分离方面(英文), 膜科学与技术, 04 (2006) 4-8.
[12] L. Zhao, Z. Li, T. Wirth, Triptycene derivatives: synthesis and applications, Chem. Lett., 39 (2010) 658-667.
[13] Y. Jiang, C.F. Chen, Recent developments in synthesis and applications of triptycene and pentiptycene derivatives, Eur. J. Org. Chem., 2011 (2011) 6377-6403.
[14] Y.J. Cho, H.B. Park, High performance polyimide with high internal free volume elements, Macromol. Rapid Commun., 32 (2011) 579-586.
[15] J.R. Wiegand, Z.P. Smith, Q. Liu, C.T. Patterson, B.D. Freeman, R. Guo, Synthesis and characterization of triptycene-based polyimides with tunable high fractional free volume for gas separation membranes, J. Mater. Chem. A, 2 (2014) 13309-13320.
[16] J.R. Weidman, S. Luo, C.M. Doherty, A.J. Hill, P. Gao, R. Guo, Analysis of governing factors controlling gas transport through fresh and aged triptycene-based polyimide films, J. Membr. Sci., 522 (2017) 12-22.
[17] F. Alghunaimi, B. Ghanem, N. Alaslai, R. Swaidan, E. Litwiller, I. Pinnau, Gas permeation and physical aging properties of iptycene diamine-based microporous polyimides, J. Membr. Sci., 490 (2015) 321-327.
[18] Z. Tian, B. Cao, P. Li, Effects of sub-Tg cross-linking of triptycene-based polyimides on gas permeation, plasticization resistance and physical aging properties, J. Membr. Sci., 560 (2018) 87-96.
[19] C. Zhang, L. Fu, Z. Tian, B. Cao, P. Li, Post-crosslinking of triptycene-based Tröger's base polymers with enhanced natural gas separation performance, J. Membr. Sci., 556 (2018) 277-284.
[20] S. Luo, J.R. Wiegand, B. Kazanowska, C.M. Doherty, K. Konstas, A.J. Hill, R. Guo, Finely tuning the free volume architecture in iptycene-containing polyimides for highly selective and fast hydrogen transport, Macromolecules, 49 (2016) 3395-3405.
[21] S. Luo, Q. Liu, B. Zhang, J.R. Wiegand, B.D. Freeman, R. Guo, Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation, J. Membr. Sci., 480 (2015) 20-30.
[22] S. Luo, J. Liu, H. Lin, B.A. Kazanowska, M.D. Hunckler, R.K. Roeder, R. Guo, Preparation and gas transport properties of triptycene-containing polybenzoxazole (PBO)-based polymers derived from thermal rearrangement (TR) and thermal cyclodehydration (TC) processes, J. Mater. Chem. A, 4 (2016) 17050-17062.
[23] F. Alghunaimi, B. Ghanem, Y. Wang, O. Salinas, N. Alaslai, I. Pinnau, Synthesis and gas permeation properties of a novel thermally-rearranged polybenzoxazole made from an intrinsically microporous hydroxyl-functionalized triptycene-based polyimide precursor, Polymer, 121 (2017) 9-16.
[24] S. Luo, Q. Zhang, L. Zhu, H. Lin, B.A. Kazanowska, C.M. Doherty, A.J. Hill, P. Gao, R. Guo, Highly selective and permeable microporous polymer membranes for hydrogen purification and CO2 removal from natural gas, Chem. Mater., 30 (2018) 5322-5332.
[25] A. Yerzhankyzy, B.S. Ghanem, Y. Wang, N. Alaslai, I. Pinnau, Gas separation performance and mechanical properties of thermally-rearranged polybenzoxazoles derived from an intrinsically microporous dihydroxyl-functionalized triptycene diamine-based polyimide, J. Membr. Sci., 595 (2020).
[26] 李凯华、朱芷杨、程博闻、李建新、马小华, 自聚微孔聚合物气体分离膜材料研究进展, 膜科学与技术, v.40;No.204 (2020) 122-132.
[27] B.S. Ghanem, R. Swaidan, X. Ma, E. Litwiller, I. Pinnau, Energy-efficient hydrogen separation by ab-type ladder-polymer molecular sieves, Adv. Mater., 26 (2014) 6696-6700.
[28] I. Rose, C.G. Bezzu, M. Carta, B. Comesaña-Gándara, E. Lasseuguette, M.C. Ferrari, P. Bernardo, G. Clarizia, A. Fuoco, J.C. Jansen, Kyle E. Hart, T.P. Liyana-Arachchi, C.M. Colina, N.B. McKeown, Polymer ultrapermeability from the inefficient packing of 2D chains, Nat. Mater., 16 (2017) 932-937.
[29] D.A. Paige, M.A. Siegler, J.K. Harmon, G.A. Neumann, E.M. Mazarico, D.E. Smith, M.T. Zuber, E. Harju, M.L. Delitsky, S.C. Solomon, Thermal stability of volatiles in the north polar region of Mercury, Science, 339 (2013) 300-303.
[30] M. Carta, M. Croad, R. Malpass-Evans, J.C. Jansen, P. Bernardo, G. Clarizia, K. Friess, M. Lan?, N.B. McKeown, Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers, Adv. Mater., 26 (2014) 3526-3531.
[31] Y. He, F.M. Benedetti, S. Lin, C. Liu, Y. Zhao, H.Z. Ye, T. Van Voorhis, M.G. De Angelis, T.M. Swager, Z.P. Smith, Polymers with side chain porosity for ultrapermeable and plasticization resistant materials for gas separations, Adv. Mater., 31 (2019) e1807871.
[32] X. Ma, Z. Zhu, W. Shi, W. Ji, J. Li, Y. Wang, I. Pinnau, Unprecedented gas separation performance of a difluoro-functionalized triptycene-based ladder PIM membrane at low temperature, J. Mater. Chem. A, 9 (2021) 5404-5414.
[33] J. Weber, Q. Su, M. Antonietti, A. Thomas, Exploring polymers of intrinsic microporosity–microporous, soluble polyamide and polyimide, Macromol. Rapid Commun., 28 (2007) 1871-1876.
[34] B.S. Ghanem, N.B. McKeown, P.M. Budd, J.D. Selbie, D. Fritsch, High‐performance membranes from polyimides with intrinsic microporosity, Adv. Mater., 20 (2008) 2766-2771.
[35] B.S. Ghanem, N.B. McKeown, P.M. Budd, N.M. Al-Harbi, D. Fritsch, K. Heinrich, L. Starannikova, A. Tokarev, Y. Yampolskii, Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides, Macromolecules, 42 (2009) 7881-7888.
[36] B.S. Ghanem, R. Swaidan, E. Litwiller, I. Pinnau, Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation, Adv. Mater., 26 (2014) 3688-3692.
[37] R. Swaidan, B. Ghanem, M. Al-Saeedi, E. Litwiller, I. Pinnau, Role of intrachain rigidity in the plasticization of intrinsically microporous triptycene-based polyimide membranes in mixed-gas CO2/CH4 separations, Macromolecules, 47 (2014) 7453-7462.
[38] R. Swaidan, M. Al-Saeedi, B. Ghanem, E. Litwiller, I. Pinnau, Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes, Macromolecules, 47 (2014) 5104-5114.
[39] N. Alaslai, B. Ghanem, F. Alghunaimi, I. Pinnau, High-performance intrinsically microporous dihydroxyl-functionalized triptycene-based polyimide for natural gas separation, Polymer, 91 (2016) 128-135.
[40] B. Ghanem, F. Alghunaimi, X. Ma, N. Alaslai, I. Pinnau, Synthesis and characterization of novel triptycene dianhydrides and polyimides of intrinsic microporosity based on 3,3?-dimethylnaphthidine, Polymer, 101 (2016) 225-232.
[41] B.S. Ghanem, F. Alghunaimi, Y. Wang, G. Genduso, I. Pinnau, Synthesis of highly gas-permeable polyimides of intrinsic microporosity derived from 1,3,6,8-tetramethyl-2,7-diaminotriptycene, ACS Omega, 3 (2018) 11874-11882.
[42] R. Swaidan, B. Ghanem, E. Litwiller, I. Pinnau, Physical aging, plasticization and their effects on gas permeation in “rigid” polymers of intrinsic microporosity, Macromolecules, 48 (2015) 6553-6561.
[43] S. Luo, K.A. Stevens, J.S. Park, J.D. Moon, Q. Liu, B.D. Freeman, R. Guo, Highly CO2-selective gas separation membranes based on segmented copolymers of poly(ethylene oxide) reinforced with pentiptycene-containing polyimide hard segments, ACS Appl. Mater. Interfaces, 8 (2016) 2306-2317.
[44] A. Pournaghshband Isfahani, M. Sadeghi, K. Wakimoto, B.B. Shrestha, R. Bagheri, E. Sivaniah, B. Ghalei, Pentiptycene-based polyurethane with enhanced mechanical properties and CO2-plasticization resistance for thin film gas separation membranes, ACS Appl. Mater. Interfaces, 10 (2018) 17366-17374.
[45] T. Corrado, Z. Huang, J. Aboki, R. Guo, Microporous polysulfones with enhanced separation performance via integration of the triptycene moiety, Ind. Eng. Chem. Res., 59 (2019) 5351-5361.
[46] G. Genduso, B.S. Ghanem, Y. Wang, I. Pinnau, Synthesis and gas-permeation characterization of a novel high-surface area polyamide derived from 1,3,6,8-tetramethyl-2,7-diaminotriptycene: Towards polyamides of intrinsic microporosity (pim-pas), Polymers, 11 (2019).
[47] S. Dai, R. Liao, H. Zhou, W. Jin, Synthesis of triptycene-based linear polyamide membrane for molecular sieving of N2 from the VOC mixture, Sep. Purif. Technol., 252 (2020).
[48] Q. Zhang, S. Luo, J.R. Weidman, R. Guo, Preparation and gas separation performance of mixed-matrix membranes based on triptycene-containing polyimide and zeolite imidazole framework (ZIF-90), Polymer, 131 (2017) 209-216.
[49] Q. Zhang, S. Luo, J. Weidman, R. Guo, Surface modification of ZIF‐90 with triptycene for enhanced interfacial interaction in mixed‐matrix membranes for gas separation, J. Polym. Sci., 58 (2020) 2675-2687.
[50] A. Fuoco, B. Comesaña-Gándara, M. Longo, E. Esposito, M. Monteleone, I. Rose, C.G. Bezzu, M. Carta, N.B. McKeown, J.C. Jansen, Temperature dependence of gas permeation and diffusion in triptycene-based ultrapermeable polymers of intrinsic microporosity, ACS Appl. Mater. Interfaces, 10 (2018) 36475-36482.
[51] I. Rose, M. Carta, R. Malpass-Evans, M.-C. Ferrari, P. Bernardo, G. Clarizia, J.C. Jansen, N.B. McKeown, Highly permeable benzotriptycene-based polymer of intrinsic microporosity, ACS Macro Lett., 4 (2015) 912-915.
[52] S. Luo, Q. Zhang, Y. Zhang, K.P. Weaver, W.A. Phillip, R. Guo, Facile synthesis of a pentiptycene-based highly microporous organic polymer for gas storage and water treatment, ACS Appl. Mater. Interfaces, 10 (2018) 15174-15182.
[53] H. Luo, J. Aboki, Y. Ji, R. Guo, G.M. Geise, Water and salt transport properties of triptycene-containing sulfonated polysulfone materials for desalination membrane applications, ACS Appl. Mater. Interfaces, 10 (2018) 4102-4112.
[54] J. Aboki, B. Jing, S. Luo, Y. Zhu, L. Zhu, R. Guo, Highly proton conducting polyelectrolyte membranes with unusual water swelling behavior based on triptycene-containing poly(arylene ether sulfone) multiblock copolymers, ACS Appl. Mater. Interfaces, 10 (2018) 1173-1186.
[55] L.C.H. Moh, J.B. Goods, Y. Kim, T.M. Swager, Free volume enhanced proton exchange membranes from sulfonated triptycene poly(ether ketone), J. Membr. Sci., 549 (2018) 236-243.
[56] T. Wang, T. Li, J. Aboki, R. Guo, Disulfonated poly(arylene ether sulfone) random copolymers containing hierarchical iptycene units for proton exchange membranes, Front. Chem., 8 (2020) 674.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号