Position:Home >> Abstract

Formation mechanism of silica scaling on reverse osmosis membrane and research progress of anti-silica scaling membrane
Authors: ZHANG Jun, ZHAO Song, HAO Zhan, WANG Zhi, WANG Jixiao
Units: Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University; Tianjin Key Laboratory of Membrane Science and Desalination Technology; State Key Laboratory of Chemical Engineering (Tianjin University); Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300350, China
KeyWords: reverse osmosis; silica scale; formation mechanism; anti-silica scaling membrane; research progress
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2022,42(2):128-137

Abstract:
 Reverse osmosis (RO) technology has the advantages of low energy consumption and easy operation. It has been applied to various water treatment processes. However, membrane scaling, especially silica scaling, has caused problems such as reduced membrane flux and shortened life span, which severely restrict the further popularization and application of RO technology. Firstly, we introduce the formation mechanism of silica scale, including the polymerization process of silicic acid in solution and the formation process of silica scale on the RO membrane surface. Then, the research progress of anti-silica scaling membranes is summarized from the methods of surface chemical modification, interfacial polymerization and layer-by-layer self-assembly. Eventually, we propose the development prospects of this field.

Funds:
国家自然科学基金项目(21776205)

AuthorIntro:
张军(1995—),男,山西朔州人,硕士生,研究方向为膜材料与膜分离

Reference:
  [1] Mauter M S, Zucker I, Perreault F, et al. The role of nanotechnology in tackling global water challenges[J]. Nat Sustain, 2018, 1(4): 166-175.
 [2] 徐国荣, 王生辉, 赵河立, 等. 海水淡化聚酰胺复合反渗透膜的发展趋势与展望[J]. 膜科学与技术, 2015, 35(05): 122-126.
 [3] 宋瀚文, 宋达, 张辉, 等. 国内外海水淡化发展现状[J]. 膜科学与技术, 2021, 41(04): 170-176.
 [4] Mi B, Elimelech M. Silica scaling and scaling reversibility in forward osmosis[J]. Desalination, 2013, 312: 75-81.
 [5] Tong T Z, Wallace A F, Zhao S, et al. Mineral scaling in membrane desalination: Mechanisms, mitigation strategies, and feasibility of scaling-resistant membranes[J]. J Membr Sci, 2019, 579: 52-69.
 [6] Pomerantz N, Ladizhansky Y, Korin E, et al. Prevention of scaling of reverse osmosis membranes by “Zeroing” the elapsed nucleation time. Part I. Calcium sulfate[J]. Ind Eng Chem Res, 2006, 45(6): 2008-2016.
 [7] 李利华, 崔勇, 蒋玉明, 等. 反渗透膜阻垢剂投加量优化及其阻垢性能评价[J]. 膜科学与技术, 2021, 41(03): 135-141.
 [8] 方涵, 高春梅, 刘圣慧, 等. 农药废液处理工艺中反渗透膜污染与清洗研究[J]. 膜科学与技术, 2020, 40(02): 118-126.
 [9] Neofotistou E, Demadis K D. Use of antiscalants for mitigation of silica (SiO2) fouling and deposition: Fundamentals and applications in desalination systems[J]. Desalination, 2004, 167(1-3): 257-272.
[10] Demadis K D, Mavredaki E, Somara M. Additive-driven dissolution enhancement of colloidal silica. 1. Basic principles and relevance to water treatment[J]. Ind Eng Chem Res, 2011, 50(22): 12587-12595.
[11] Sahachaiyunta P, Koo T, Sheikholeslami R. Effect of several inorganic species on silica fouling in RO membranes[J]. Desalination, 2002, 144(1): 373-378.
[12] Milne N A, O'Reilly T, Sanciolo P, et al. Chemistry of silica scale mitigation for RO desalination with particular reference to remote operations[J]. Water Res, 2014, 65: 107-133.
[13] Ning R Y. Discussion of silica speciation, fouling, control and maximum reduction[J]. Desalination, 2003, 151(1): 67-73.
[14] Spinthaki A, Demadis K D. Chemical Methods for Scaling Control[M]// Switzerland: Springer, Cham, 2020: 307-342.
[15] Chan S H. A review on solubility and polymerization of silica[J]. Geothermics, 1989, 18(1): 49-56.
[16] Marshall W L, Warakomski J M. Amorphous silica solubilities—II. Effect of aqueous salt solutions at 25°C[J]. Geochim Cosmochi Acta, 1980, 44(7): 915-924.
[17] Lunevich L, Sanciolo P, Smallridge A, et al. Silica scale formation and effect of sodium and aluminium ions -29Si NMR study[J]. Environ Sci-Wat Res Technol, 2016, 2(1): 174-185.
[18] Koo T, Lee Y J, Sheikholeslami R. Silica fouling and cleaning of reverse osmosis membranes[J]. Desalination, 2001, 139(1-3): 43-56.
[19] Sheikholeslami R, Tan S. Effects of water quality on silica fouling of desalination plants[J]. Desalination, 1999, 126(1): 267-280.
[20] Demadis K D, Somara M, Mavredaki E. Additive-driven dissolution enhancement of colloidal silica. 3. Fluorine-containing additives[J]. Ind Eng Chem Res, 2012, 51(7): 2952-2962.
[21] Demadis K D, Mavredaki E, Somara M. Additive-driven dissolution enhancement of colloidal silica. 2. Environmentally friendly additives and natural products[J]. Ind Eng Chem Res, 2011, 50(24): 13866-13876.
[22] Demadis K D, Neofotistou E. Synergistic effects of combinations of cationic polyaminoamide dendrimers/anionic polyelectrolytes on amorphous silica formation: A bioinspired approach[J]. Chem Mat, 2007, 19(3): 581-587.
[23] Neofotistou E, Demadis K D. Silica scale inhibition by polyaminoamide STARBURST ® dendrimers[J]. Colloid Surf A-Physicochem Eng Asp, 2004, 242(1): 213-216.
[24] Hater W, Kolk C Z, Braun G, et al. The performance of anti-scalants on silica-scaling in reverse osmosis plants[J]. Desalin Water Treat, 2015, 51(4-6): 908-914.
[25] Hater W, Kolk C Z, Dupoiron C, et al. Silica scaling on reverse osmosis membranes-Investigation and new test methods[J], Desalin Water Treat, 2011,31(1-3): 326-330.
[26] Kempter A, Gaedt T, Boyko V, et al. New insights into silica scaling on RO-membranes[J]. Desalin Water Treat, 2014, 51(4-6): 899-907.
[27] Wallace A F, Deyoreo J J, Dove P M. Kinetics of silica nucleation on carboxyl- and amine-terminated surfaces: Insights for biomineralization[J]. J Am Chem Soc, 2009, 131(14): 5244-5250.
[28] Rathinam K, Abraham S, Oren Y, et al. Surface-induced silica scaling during brackish water desalination: The role of surface charge and specific chemical groups[J]. Environ Sci Technol, 2019, 53(9): 5202-5211.
[29] Tong T Z, Zhao S, Boo C, et al. Relating silica scaling in reverse osmosis to membrane surface properties[J]. Environ Sci Technol, 2017, 51(8): 4396-4406.
[30] 齐云龙. 抗硅垢反渗透复合膜制备研究[D]. 天津: 天津大学, 2020.
[31] Elsaid K, Sayed E T, Abdelkareem M A, et al. Environmental impact of desalination processes: Mitigation and control strategies[J]. Sci Total Environ, 2020, 740: 140125.
[32] Yu W, Song D , Chen W, et al. Antiscalants in RO membrane scaling control[J]. Water Res, 2020, 183: 115985.
[33] Liu Q, Xu G R, Das R. Inorganic scaling in reverse osmosis (RO) desalination: Mechanisms, monitoring, and inhibition strategies[J]. Desalination, 2019, 468: 114065.
[34] Yu T, Meng L, Zhao Q B, et al. Effects of chemical cleaning on RO membrane inorganic, organic and microbial foulant removal in a full-scale plant for municipal wastewater reclamation[J]. Water Res, 2017, 113: 1-10.
[35] 任六一, 赵颂, 王志, 等. 抗污染芳香聚酰胺反渗透膜研究进展[J]. 化工学报, 2020, 71(02): 475-486.
[36] 李银, 张林. 抗生物污染反渗透膜的研究进展[J]. 膜科学与技术, 2018, 38(02): 111-118.
[37] Wang C L, Such G K, Widjaya A, et al. Click poly(ethylene glycol) multilayers on RO membranes: Fouling reduction and membrane characterization[J]. J Membr Sci, 2012, 409-410: 9-15.
[38] Kang G D, Liu M, Lin B, et al. A novel method of surface modification on thin-film composite reverse osmosis membrane by grafting poly(ethylene glycol)[J]. Polymer, 2007, 48(5): 1165-1170.
[39] Yang Z, Saeki D, Matsuyama H. Zwitterionic polymer modification of polyamide reverse-osmosis membranes via surface amination and atom transfer radical polymerization for anti-biofouling[J]. J Membr Sci, 2018, 550: 332-339.
[40] Wang J, Wang Z, Wang J X, et al. Improving the water flux and bio-fouling resistance of reverse osmosis (RO) membrane through surface modification by zwitterionic polymer[J]. J Membr Sci, 2015, 493: 188-199.
[41] Miller D J, Dreyer D R, Bielawski C W, et al. Surface modification of water purification membranes [J]. Angew Chem-Int Edit, 2017, 56(17): 4662-4711.
[42] 胡群辉, 周丰平, 彭博, 等. 表面接枝改性聚酰胺复合反渗透膜及其性能研究[J]. 膜科学与技术, 2019, 39(01): 22-27.
[43] Guan Y F, Boo C, Lu X L, et al. Surface functionalization of reverse osmosis membranes with sulfonic groups for simultaneous mitigation of silica scaling and organic fouling[J]. Water Res, 2020, 185: 116203.
[44] Liu C, Yang J, Guo B B, et al. Interfacial polymerization at the alkane/ionic liquid interface[J]. Angew Chem-Int Edit, 2021, 60(26): 14636-14643.
[45] 周卫东, 汪菲, 周克梅, 等. 基于新型二胺单体的反渗透膜的制备及其脱盐性能研究[J]. 膜科学与技术, 2019, 39(03): 41-48.
[46] Mankol V, Hao Z, Zhao S, et al. Sulfonated reverse osmosis membrane fabricated with comonomer having excellent scaling and fouling resistance[J]. Ind Eng Chem Res, 2021, 60(7): 3095-3104.
[47] Hao Z, Zhao S, Li Q H, et al. Reverse osmosis membranes with sulfonate and phosphate groups having excellent anti- scaling and anti-fouling properties[J]. Desalination, 2021, 509: 115076.
[48] Richardson J J, Bjornmalm M, Caruso F. Multilayer assembly. Technology-driven layer-by-layer assembly of nanofilms[J]. Science, 2015, 348(6233): aaa2491.
[49] Xia Y, Wang Z G, Chen L Y, et al. Nanoscale polyelectrolyte/metal ion hydrogel modified RO membrane with dual anti-fouling mechanism and superhigh transport property[J]. Desalination, 2020, 488: 114510.
[50] Qi Y L, Tong T Z, Zhao S, et al. Reverse osmosis membrane with simultaneous fouling- and scaling-resistance based on multilayered metal-phytic acid assembly[J]. J Membr Sci, 2020, 601: 117888.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号