Position:Home >> Abstract

Study on the preparation of PVC modified microporous membrane for specific adsorption of bound bilirubin
Authors: YANG Yue,LIU Juanjuan,LU Xiaolong,MA Ronghua,ZHENG Shuyun,SHU Guiming,LI Ke
Units: 1 State Key Laboratory of Separation Membrane and Membrane Processes, School of Material Science and Engineering, Institute of Biological and Chemical Engineering, Tiangong University, Tianjin 300387, China 2 Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Tianjin Third Central Hospital, 300170, China 3 Tianjin Key Laboratory of Hemoperfusion Technology, Tianjin Zibo High Tech Co., Ltd, 300170, China 4 Tianjin Children’s Hospital, 300074, China
KeyWords: PVC; Diethylenetriamine; Bilirubin; Blood purification; Surface modification
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2022,42(5):86-93

Abstract:
 The main clinical treatment for hyperbilirubinemia is hemoperfusion technique, but the blood compatibility of hemoperfusion resin is poor. The need of plasma separator during treatment increases the risk of treatment and the cost of treatment. Therefore, this paper creatively developed a new type of polyvinyl chloride (PVC) composite membrane with one-step "filtration adsorption" function. The chemical structure and morphology of the membrane were studied by means of Fourier infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy, the basic properties of the original membrane and composite membrane were tested, and the bilirubin adsorption capacity, coagulability and hemolysis of the original membrane and composite membrane were characterized. The results showed that diethylenetriamine was successfully grafted onto the membrane surface. After grafting modification, the surface and cross-section structure of the composite membrane did not change significantly, and the maximum separation pore size was 0.27 μm, the screening rate of bovine serum albumin was 94%, the pure water flux was 445 L·m-2·h-1, the adsorption rate of bilirubin was 60%. The hemolysis rate was less than 5%, which would not cause hemolysis reaction. There was no significant change in coagulation time and fibrinogen compared with the blank control group, and would not arouse coagulation reaction.

Funds:
天津市高等学校新型膜材料及膜分离技术创新团队(No. TD13-5044);天津市科技支撑项目(20YFZCSY00310);天津市卫生健康科技项目(TJWJ2021MS014);天津市重点实验室项目(16PTSYJC00210)

AuthorIntro:
杨悦(1997?),女,天津市,硕士生,研究方向为分离膜制备,E-mail:18222066890@163.com.

Reference:
 [1] Xie M, Sun J, Chen L. Procion blue H-5R functionalized cellulose membrane with specific removal of bilirubin[J]. Cellulose, 2019, 26(13-14).
[2] Ikegami T, Shirabe K, Yoshizumi T, et al. Primary graft dysfunction after living donor liver transplantation is characterized by delayed functional hyperbilirubinemia[J]. American Journal of Transplantation, 2012, 12(7): 1886-1897.
[3] Ma C, Gao Q, Xia K, et al. Three-dimensionally porous graphene: A high-performance adsorbent for removal of albumin-bonded bilirubin[J]. Colloids & Surfaces B Biointerfaces, 2017, 149: 146-153.
[4] Andreu Y, Ostra M, Ubide C, et al. Study of a fluorometric-enzymatic method for bilirubin based on chemically modified bilirubin-oxidase and multivariate calibration[J]. Talanta, 2002, 57(2): 343-353.
[5] Asano T, Tsuru K, Hayakawa S, et al. Bilirubin adsorption property of sol-gel-derived titania particles for blood purification therapy[J]. Acta Biomaterialia, 2008, 4(4): 1067-1072.
[6] 黄盛玲, 黄德绪, 闫冰, 等. 吸附材料在血液灌流技术中的应用研究进展[J]. 广西医学, 2016, 38(5): 695-697.
[7] Dominik A, Stange J. Similarities, Differences, and potential synergies in the mechanism of action of albumin dialysis using the MARS albumin dialysis device and the cytosorb hemoperfusion device in the treatment of liver failure[J]. Blood Purification, 2021, 50(1): 119-128.
[8] Ma Y, Chen J, Li J, et al. Selective adsorption of bilirubin against albumin to alkylamine functionalized PVA microspheres[J]. Journal of Biomaterials Science Polymer Edition,2019,30(5): 337-354.
[9] Annesini M, Dicarlo C, Piemonte V, et al. Bilirubin and tryptophan adsorption in albumin-containing solutions: I. Equilibrium isotherms on activated carbon[J]. Biochemical Engineering Journal, 2008, 40(2): 205-210.
[10] Piemonte V, Turchetti L, Annesini M. Bilirubin removal from albumin-containing solutions: dynamic adsorption on anionic resin[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(5): 708-713.
[11] Yu Y. Adsorbents in blood purification: From lab search to clinical therapy[J]. Chinese Science Bulletin, 2013, 58(35): 4357-4361.
[12] Harm S, Falkenhagen D, Hartmann J. Pore size--A key property for selective toxin removal in blood purification[J]. The International Journal of Artificial Organs. 2014;37(9): 668-678. 
[13] Liu J, Shu G, Lu X, et al. Alginate/HSA double-sided functional PVDF multifunctional composite membrane for bilirubin removal[J]. Separation and Purification Technology, 2020, 252: 117295.
[14] Meijers B, Verhamme P, Nevens F, et al. Major coagulation disturbances during fractionated plasma separation and adsorption[J]. American Journal of Transplantation. 2007;7(9): 2195-2199.
[15] Chen J, Han W, Su R, et al. Non-ionic macroporous polystyrene adsorbents for removal of serum toxins in liver failure by hemoperfusion[J]. Artificial Cells Nanomedicine& Biotechnology. 2016;45(1): 1.
[16] Wang W, Zhang H, Zhang Z, et al. Amine-functionalized PVA-co-PE nanofibrous membrane as affinity membrane with high adsorption capacity for bilirubin[J]. Colloids & Surfaces B Biointerfaces, 2017, 150.
[17] 倪非非, 舒桂明, 李可, 等. 用于胆红素吸附的β-环糊精改性PVDF血浆分离膜的制备[J]. 膜科学与技术, 2018, 38(3): 16-24.
[18] Yuan J, Zhang J, Zang X, et al. Improvement of blood compatibility on cellulose membrane surface by grafting betaines[J]. Colloids & Surfaces B Biointerfaces, 2003, 30(1-2): 147-155.
[19] Voicu S, Condruz R, Mitran V. Sericin covalent immobilization onto cellulose acetate membrane for biomedical applications[J]. ACS Sustainable Chemistry & Engineering , 2016, 4(3): 1-33.
[20] Bowry S, Gatti E, Vienken J. Contribution of polysulfone membranes to the success of convective dialysis therapies[J]. Contributions to Nephrology, 2011, 173: 110-118.
[21] Bruggen B. Chemical modification of polyethersulfone nanofiltration membranes: A review[J]. Journal of Applied Polymer Science, 2009, 114(1): 630-642.
[22] Han R, Zhang S, Yang D, et al. Preparation and characterization of novel copoly (phthalazinone ether sulfone) ultrafiltration membranes with excellent thermal stability[J]. Journal of Membrane Science, 2010, 358(1-2): 142-149.
[23] 马潇, 冯霞. PVC分离膜的改性研究进展[J]. 广州化工, 2019, 47(4): 16-17+20.
[24] Ma R, Lu X, Kong X, et al. A method of controllable positive-charged modification of PVDF-CTFE membrane surface based on C-Cl active site[J]. Journal of Membrane Science, 2021, 620(5): 118936.
[25] 吕晓龙. 中空纤维多孔膜性能评价方法探讨[J] 膜科学与技术, 2011, 31(2): 1-6.
[26] 吕晓龙. 聚偏氟乙烯中空纤维膜纺丝添加剂的研究[J] 天津工业大学学报,  2005, 24(5): 7-10.
[27] 刘娟娟, 吴春凤, 吕晓龙, 等. 聚偏氟乙烯中空纤维血浆分离膜的研制[C]. 2016年中国-欧盟医药生物膜科学与技术研讨会论文集, 2016: 109-113.
[28] Amiji M. Permeability and blood compatibility properties of chitosan-poly(ethylene oxide) blend membranes for haemodialysis[J]. Biomaterials, 1995, 16(8): 593-599.
[29] Xia B. Bilirubin removal by Cibacron Blue F3GA attached nylon-based hydrophilic affinity membrane[J]. Journal of Membrane Science, 2003, 226(1-2): 9-20.
[30] 杨玉林. 材料测试技术与分析方法[M]. 哈尔滨: 哈尔滨工业大学出版社, 2014.
[31] Xiang T, Lu T, Xie Y, et al. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry[J]. Acta Biomaterialia, 2016, 40: 162-171.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号