Position:Home >> Abstract

Synthesis of amino poly(arylene ether) and their CO2/N2 separation performance
Authors: ZHAO Siyu, ZONG Lishuai, ZOU Yuyang, LI Zhansheng, ZHANG Shouhai, JIAN Xigao
Units: School of Chemical Engineering, Liaoning High Performance Polymer Engineering Research Center, Dalian University of Technology, Dalian 116024, China
KeyWords: amino poly(arylene ether); CO2 separation; flue gas; carbon capture
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2022,42(6):110-117

Abstract:
 The post-combustion carbon dioxide capture is essential for the mitigation of the global greenhouse effect and achieving 'carbon emission peak’ and ‘carbon neutrality’. As the second-generation carbon capture technology, the development of high-performance membrane materials is the basis for the large-scale application of membrane-based carbon capture (CO2/N2 separation). The CO2 permselectivity could be improved by the addition of CO2-philic groups, which is one of the most promising methods for the developments of high performance membrane materials for CO2/N2 separation. In this work, 9,9'-bis-(4-aminophenyl)-2,7-dihydroxyfluorene (BADHF) of CO2-philicity was used as monomer to synthesize the amino poly(arylene ether) with various molar ratio of BADHF and DHPZ. The chemical structure and thermal properties of amino poly(arylene ether) were characterized. The homogeneous amino poly(arylene ether) membranes were prepared by the solvent evaporation method. The effects of amino content and temperature on the gas permselcetivity were investigated. The CO2 and N2 permeability of amino poly(arylene ether) could be correlated by the Arrhenius equation. With the increase of amino content, the CO2 and N2 permeability reduced, CO2/N2 selectivity increased first and then decreased. When the molar ratio of BADHF and DHPZ was 8:2, the amino poly(arylene ether) had the best CO2/N2 separation performance with CO2/N2 selectivity of 20.25.

Funds:
辽宁省“兴辽英才”项目科技创新领军人才(XLYC1802073);大连市顶尖及领军人才项目(2019RD08)

AuthorIntro:
赵思雨(1997-),女,辽宁锦州人,硕士研究生,主要从事聚合物气体分离膜材料的研究

Reference:
 [1] 徐南平, 赵静, 刘公平. “双碳”目标下膜技术发展的思考 [J]. 化工进展, 2022, 41(03): 1091-1096.
[2] 王志, 原野, 生梦龙, 等. 膜法碳捕集技术——研究现状及展望 [J]. 化工进展, 2022, 41(03): 1097-1101.
[3] MERKEL T C, LIN H, WEI X, et al. Power plant post-combustion carbon dioxide capture: An opportunity for membranes [J]. Journal of Membrane Science, 2010, 359(1): 126-139.
[4] XIE K, FU Q, QIAO G G, et al. Recent progress on fabrication methods of polymeric thin film gas separation membranes for CO2 capture [J]. Journal of Membrane Science, 2019, 572: 38-60.
[5] TONG Z, HO W S W. Facilitated transport membranes for CO2 separation and capture [J]. Separation Science and Technology, 2017, 52(2): 156-167.
[6] HAN S H, LEE J E, LEE K-J, et al. Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement [J]. Journal of Membrane Science, 2010, 357(1): 143-151.
[7] HOUDE A Y, KRISHNAKUMAR B, CHARATI S G, et al. Permeability of dense (homogeneous) cellulose acetate membranes to methane, carbon dioxide, and their mixtures at elevated pressures [J]. Journal of Applied Polymer Science, 1996, 62(13): 2181-92.
[8] 伍勇东, 赵丹, 任吉中, 等. Pebax/TPP共混膜的制备及CO2分离性能研究 [J]. 膜科学与技术, 2020, 40(1): 37-44.
[9] 闫海龙, 高缨佳, 胡爱军, 等. 分离CO2的纳米材料/ Pebax混合基质膜研究进展 [J]. 膜科学与技术, 2021, 41(5): 174-182.
[10] 谢亚芳, 金花, 李砚硕. ZIF-93/Pebax 2533混合基质膜的制备及其CO2/N2分离性能研究 [J]. 膜科学与技术, 2021, 41(5): 79-86+96.
[11] CHEN K K, HAN Y, ZHANG Z, et al. Enhancing membrane performance for CO2 capture from flue gas with ultrahigh MW polyvinylamine [J]. Journal of Membrane Science, 2021, 628: 119215.
[12] LIAO J, WANG Z, WANG M, et al. Adjusting carrier microenvironment in CO2 separation fixed carrier membrane [J]. Journal of Membrane Science, 2016, 511: 9-19.
[13] WU D, SUN C, DUTTA P K, et al. SO2 interference on separation performance of amine-containing facilitated transport membranes for CO2 capture from flue gas [J]. Journal of Membrane Science, 2017, 534: 33-45.
[14] 张守海, 蹇锡高. 杂萘联苯聚芳醚功能膜的研究进展 [J]. 高分子通报, 2011, 9: 1-12.
[15] LIN H, FREEMAN B D. Materials selection guidelines for membranes that remove CO2 from gas mixtures [J]. Journal of Molecular Structure, 2005, 739(1): 57-74.
[16] CHEN Z, WANG Z, HOU L, et al. A simple self-regulating permeability and selectivity of poly (arylene ether ketone) with amino groups for gas separation membrane [J]. Journal of Polymer Research, 2019, 26(12): 267.
[17] CHEN Y-P, HE X-Y, DAYO A Q, et al. Synthesis and characterization of cardanol containing tetra-functional fluorene-based benzoxazine resin having two different oxazine ring structures [J]. Polymer, 2019, 179: 121620.
[18] SUN H. COMPASS:  An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds [J]. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364.
[19] GOLZAR K, AMJAD-IRANAGH S, AMANI M, et al. Molecular simulation study of penetrant gas transport properties into the pure and nanosized silica particles filled polysulfone membranes [J]. Journal of Membrane Science, 2014, 451: 117-134.
[20] 李战胜, 高波, 张守海, 等. 渗透汽化分离芳烃/烷烃的聚芳醚腈酮复合膜的制备 [J]. 膜科学与技术, 2019, 39(5): 18-22.
[21] RIZZUTO C, CARAVELLA A, BRUNETTI A, et al. Sorption and Diffusion of CO2/N2 in gas mixture in thermally-rearranged polymeric membranes: A molecular investigation [J]. Journal of Membrane Science, 2017, 528: 135-146.
[22] AKKERMANS R L C, SPENLEY N A, ROBERTSON S H. Monte Carlo methods in Materials Studio [J]. Mol Simul, 2013, 39(14-15): 1153-1164.
[23] 邹修洋, 王杰, 李梅生, 等. 渗透汽化膜传递机理分子动力学模拟研究进展 [J]. 膜科学与技术, 2019, 39(1): 136-142.
[24] CHENG S-X, CHUNG T-S, WANG R, et al. Gas-sorption properties of 6FDA–durene/1,4-phenylenediamine (pPDA) and 6FDA–durene/1,3-phenylenediamine (mPDA) copolyimides [J]. Journal of Applied Polymer Science, 2003, 90(8): 2187-2193.
[25] LI Z, JIANG C. Investigation of the dynamics of poly(ether sulfone) membrane formation by immersion precipitation [J]. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(5): 498-510.
[26] LIN H, FREEMAN B D. Gas solubility, diffusivity and permeability in poly(ethylene oxide) [J]. Journal of Membrane Science, 2004, 239(1): 105-117.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号