Position:Home >> Abstract

Electroneutral nanofiltration membrane and its dye desalination and anti-fouling performance
Authors: GUO LingYi, XIE Rui, JU Xiaojie, WANG Wei, LIU Zhuang, CHU Liangyin
Units: School of Chemical Engineering, Sichuan University, Chengdu 610065
KeyWords: Zwitterionic ionic liquid; Electroneutral; Nanofiltration membrane; Dye desalination; Anti-fouling
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2022,42(6):134-143

Abstract:
 The nanofiltration membranes with electroneutral surfaces (PAN-DPS) were prepared by dopamine(DA)-assisted fast-deposition of sulfobetaine methacrylate (SBMA) and polyethyleneimine (PEI) on polyacrylonitrile (PAN) ultrafiltration membranes using copper sulfate/hydrogen peroxide (CuSO4/H2O2) as triggers. The effects of the feeding ratio of SBMA and PEI on the microstructure, chemical composition, surface wettability and charge properties of PAN-DPS membranes were systematically investigated, and the dye/salt separation and anti-fouling performance toward bovine serum albumin (BSA) of the membranes were examined. The results showed that the membrane prepared by the feeding ratio of 10:1, whose surface coated with the maximal amount of DA and SBMA aggregates, was provided with a functional layer thickness of 636 nm, a surface water contact angle of 33.2º, and an isoelectric point of about pH 7.2. The pure water flux across the membrane was 15.6 L/(m2·h·bar), the rejection of methyl blue was 99.2%, and the rejection of NaCl, Na2SO4 and MgCl2 were 3.4%, 5.4% and 8.5%, respectively. The static adsorption amount of BSA on this membrane in 1 mg/mL BSA solution was 7.0 µg/cm2, and the flux recovery ratio reached 88.5% after filtering the BSA solution for three times. The membrane exhibited a satisfactory dye desalination and anti-fouling properties. The results provide a new idea for the study of fabrication of anti-fouling nanofiltration membrane for dye desalination.

Funds:
国家自然科学基金项目(22078205);四川省杰出青年科技人才项目(2019JDJQ0026)

AuthorIntro:
郭灵艺(1996-),男 ,四川自贡人 ,硕士生 ,研究方向为膜材料与膜过程

Reference:
 [1]王景. 新型脱盐膜的制备及分离性能优化[D]. 郑州: 郑州大学, 2018.
[2]陈丁丁. 探讨印染废水优化再用的可行性[J]. 低碳世界, 2020, 10(11): 49-50.
[3]Zhu J, Tian M, Hou J, et al. Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane[J]. J Mater Chem A, 2016, 4(5): 1980-1990.
[4]Lin J, Ye W, Zeng H, et al. Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes[J]. J Membr Sci, 2015, 477: 183-193.
[5]侯爱芹, 赵择卿. 丝厂废水中的丝胶蛋白在超滤过程中的膜污染和膜清洗[J]. 工业水处理, 1997(04): 18-20.
[6]赵雪, 何瑾馨, 展义臻. 生物酶在羊毛染整加工中的应用研究[J]. 毛纺科技, 2008(11): 9-12.
[7]Ji Y, Zhao Q, An Q, et al. Novel separation membranes based on zwitterionic colloid particles: Tunable selectivity and enhanced antifouling property[J]. J Mater Chem A, 2013, 1(39): 12213.
[8]Hu M, Wu Q, Chen C, et al. Facile preparation of antifouling nanofiltration membrane by grafting zwitterions for reuse of shale gas wastewater[J]. Sep Purif Technol, 2021, 276: 119310.
[9]Liu C, Lee J, Ma J, et al. Antifouling Thin-Film composite membranes by controlled architecture of zwitterionic polymer brush layer[J]. Environ Sci Technol, 2017, 51(4): 2161-2169.
[10]Guo Y, Weng X, Wu B, et al. Construction of nonfouling nanofiltration membrane via introducing uniformly tunable zwitterionic layer[J]. J Membr Sci, 2019, 583: 152-162.
[11]Rahimi A, Mahdavi H. Zwitterionic-functionalized GO/PVDF nanocomposite membranes with improved anti-fouling properties[J]. J Water Process Eng, 2019, 32: 100960.
[12]Wang C, Li Z, Chen J, et al. Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes[J]. J Mater Sci, 2018, 53(14): 10499-10512.
[13]Ji Y, An Q, Guo Y, et al. Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles[J]. J Mater Chem A, 2016, 4(11): 4224-4231.
[14]Shahkaramipour N, Ramanan S N, Fister D, et al. Facile grafting of zwitterions onto the membrane surface to enhance antifouling properties for wastewater reuse[J]. Ind Eng Chem Res, 2017, 56(32): 9202-9212.
[15]Li G, Liu B, Bai L, et al. Improving the performance of loose nanofiltration membranes by poly-dopamine/zwitterionic polymer coating with hydroxyl radical activation[J]. Sep Purif Technol, 2020, 238: 116412.
[16]韩富亮, 袁春龙, 郭安鹊, 等. 二喹啉甲酸法(BCA)分析蛋白多肽的原理、影响因素和优点[J]. 食品与发酵工业, 2014, 40(11): 202-207.
[17]Wang J, Yue Z, Ince J S, et al. Preparation of nanofiltration membranes from polyacrylonitrile ultrafiltration membranes[J]. J Membr Sci, 2006, 286(1-2): 333-341.
[18]Zhang C, Ma M, Chen T, et al. Dopamine-triggered one-step polymerization and codeposition of acrylate monomers for functional coatings[J]. Acs Appl Mater Inter, 2017, 9(39): 34356-34366.
[19]Wang J, Zhu J, Tsehaye M T, et al. High flux electroneutral loose nanofiltration membranes based on rapid deposition of polydopamine/polyethyleneimine[J]. J Mater Chem A, 2017, 5(28): 14847-14857.
[20]张超. 聚多巴胺的沉积及其功能化表面的构建[D]. 杭州: 浙江大学, 2018.
[21]宋晓绪. 有机分离膜表面zeta电位测试方法及应用研究[D]. 天津: 天津工业大学, 2018.
[22]张杰, 刘壮, 巨晓洁, 等. 层状Mg/Al氢氧化物/聚乙烯醇复合膜的制备及染料截留性能的研究[J]. 化工学报, 2021, 72(09): 4941-4949.
[23]Tansel B. Significance of thermodynamic and physical characteristics on permeation of ions during membrane separation: Hydrated radius, hydration free energy and viscous effects[J]. Sep Purif Technol, 2012, 86: 119-126.
[24]Volkov A G, Paula S, Deamer D W. Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers[J]. Bioelectrochem Bioenerg, 1997, 42(2): 153-160.
[25]Yang Y, Li Y, Li Q, et al. Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling[J]. J Membr Sci, 2010, 362(1-2): 255-264.

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号