Position:Home >> Abstract

Noble gases separation performance of polyimide membranes
Authors: LI Siqi, ZHAO Dan,LI Hui,CHEN Zhanying,REN Jizhong
Units: 1. National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China;2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. CTBT Beijing National Data Centre Radionuclide Laboratory, Beijing 100085,China
KeyWords: polyimide;noble gas separation;membrane separation;heat treatment
ClassificationCode:TQ051.893
year,volume(issue):pagination: 2023,43(4):90-98

Abstract:
  Cryogenic distillation is carried out by using the difference in the boiling points of gases to separate noble gases. Compared with this traditional method, membrane technology has excellent properties such as higher efficiency, lower consumption, and being more environmentally friendly. The selection of membrane materials and their post-treatment are critical to the gas separation efficiency of membrane technology. In this paper, the polyimides PI-1 (BTDA-MDA/TDA) and PI-2 (PMDA/BTDA-TDA) were selected to study the effect of their distinct structures on the separation performance of noble gases. After that, the polyimide membrane with excellent performance was heat treated under different conditions, and the influence of heat treatment temperature on gas separation performance was investigated. According to the research, by changing the composition of the polyimide, the noble gas selectivity and permeability of this polyimide membrane could be adjusted. Different heat treatment conditions could change the permeability and separation performance of the membrane by changing the chain accumulation in the membrane, forming part of the membrane structure, and removing the plasticizing effect of the residual solvent. By controlling the heat treatment conditions, the permeability and selectivity of the membrane can be improved at the same time. The He permeability coefficient increased to 19.1 Barrer, and the selectivity of He/CH4 increased by 54%, while the selectivity of O2/Xe increased by 99%.

Funds:
中国科学院稳定支持基础研究领域青年团队计划(YSBR-017);中国科学院战略性先导科技专项(XDC10020203);中国科学院战略性先导技专项子课题(XDA21070606)

AuthorIntro:
李思琪(1998-),女,山东菏泽人,硕士生,主要从事气体分离方面的研究

Reference:
 [1] Banerjee D, Cairns A J, Liu J, et al. Potential of metal–organic frameworks for separation of xenon and krypton[J]. Acc Chem Res, 2015, 48(2): 211-219.
 [2] Shishova N V, Ugraitskaya S V, Shvirst N E, et al. Influence of helium, xenon, and other noble gases on cryopreservation of hela and l929 cell lines[J]. Cryobiology, 2021, 102: 114-120.
 [3] Kaplan K H. Helium shortage hampers research and industry[J]. Phys Today, 2007, 60(6): 31-32.
 [4] Scholes C, Ghosh U. Review of membranes for helium separation and purification[J]. Membranes (Basel), 2017, 7(1): 9.
 [5] Rufford T E, Chan K I, Huang S H, et al. A review of conventional and emerging process technologies for the recovery of helium from natural gas[J]. Adsorp Sci Technol, 2014, 32(1): 49-72.
 [6] Leyarovski E I, Georgiev J K, Nikolov B V, et al. Continuous process for the separation of Ne-He mixtures at 80 K[J]. Cryogenics (Guildf), 1988, 28(9): 599-604.
 [7] Rege S U, Yang R T. Kinetic Separation of oxygen and argon using molecular sieve carbon[J]. Adsorption, 2000, 6(1): 15.
 [8] Clausi D T, Koros W J. Formation of defect-free polyimide hollow fiber membranes for gas separations[J]. J Membr Sci, 2000, 167(1): 79-89.
 [9] 丁天. 膜分离与变压吸附组合工艺在天然气提氦中的应用初探[J]. 科学技术创新, 2021(15): 7-8.
[10] Bernardo P, Drioli E, Golemme G. Membrane Gas Separation: A review/state of the art[J]. Ind Eng Chem Res, 2009, 48(10): 4638-4663.
[11] Wind J D, Paul D R, Koros W J. Natural gas permeation in polyimide membranes[J]. J Membr Sci, 2004, 228(2): 227-236.
[12] Kim T, Koros W J, Husk G R. Advanced gas separation membrane materials: rigid aromatic polyimides[J]. Sep Sci Technol, 1988, 23(12-13): 1611-1626.
[13] Ayala D. Gas separation properties of aromatic polyimides[J]. J Membr Sci, 2003, 215(1-2): 61-73.
[14] Alaslai N, Ghanem B, Alghunaimi F, et al. Pure- and mixed-gas permeation properties of highly selective and plasticization resistant hydroxyl-diamine-based 6FDA polyimides for CO2/CH4 separation[J]. J Membr Sci, 2016, 505: 100-107.
[15] Liaw D, Wang K, Huang Y, et al. Advanced polyimide materials: Syntheses, physical properties and applications[J]. Prog Polym Sci, 2012, 37(7): 907-974.
[16] Soroko I, Livingston A. Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes[J]. J Membr Sci, 2009, 343(1-2): 189-198.
[17] Xiao Y, Low B T, Hosseini S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review[J]. Prog Polym Sci, 2009, 34(6): 561-580.
[18] Hosseini S S, Chung T S. Carbon membranes from blends of PBI and polyimides for N2/CH4 and CO2/CH4 separation and hydrogen purification[J]. J Membr Sci, 2009, 328(1-2): 174-185.
[19] Wang Z, Wang D, Zhang F, et al. Tröger's base-based microporous polyimide membranes for high-performance gas separation[J]. ACS Macro Lett, 2014, 3(7): 597-601.
[20] Xiao Y, Dai Y, Chung T, et al. Effects of brominating Matrimid polyimide on the physical and gas transport properties of derived carbon membranes[J]. Macromolecules, 2005, 38(24): 10042-10049.
[21] Guzmán-Lucero D, Palomeque-Santiago J, Camacho-Zúñiga C, et al. Gas permeation properties of soluble aromatic polyimides based on 4-Fluoro-4,4'-Diaminotriphenylmethane[J]. Materials (Basel), 2015, 8(4): 1951-1965.
[22] Hacarlioglu P, Toppare L, Yilmaz L. Effect of preparation parameters on performance of dense homogeneous polycarbonate gas separation membranes[J]. J Appl Polym Sci, 2003, 90(3): 776-785.
[23] Qiao X, Chung T, Pramoda K P. Fabrication and characterization of BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation dehydration of isopropanol[J]. J Membr Sci, 2005, 264(1-2): 176-189.
[24] Zhang C, Li P, Cao B. Decarboxylation crosslinking of polyimides with high CO2/CH4 separation performance and plasticization resistance[J]. J Membr Sci, 2017, 528: 206-216.
[25] Qiu W, Chen C, Xu L, et al. Sub-Tg cross-linking of a polyimide membrane for enhanced CO2 plasticization resistance for natural gas separation[J]. Macromolecules, 2011, 44(15): 6046-6056.
[26] Fuhrman C, Nutt M, Vichtovonga K, et al. Effect of thermal hysteresis on the gas permeation properties of 6FDA-based polyimides[J]. J Appl Polym Sci, 2004, 91(2): 1174-1182.
[27] Zhao D, Ren J, Wang Y, et al. High CO2 separation performance of Pebax®/CNTs/GTA mixed matrix membranes[J]. J Membr Sci, 2017, 521: 104-113.
[28] 李悦生, 丁孟贤, 徐纪平. 聚酰亚胺气体分离膜材料的结构与性能[J]. 高分子通报, 1998(3): 3-10.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号