Position:Home >> Abstract

Effect of H2O/BTESE molar ratio on organic-inorganic hybrid silica membranes for dehydration of acetic acid by pervaporation
Authors: ZHANG Zinan, REN Xiuxiu, ZHONG Jing, XU Rong, GUO Meng, WU Zihao, LIU Ruoyan
Units: Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164
KeyWords: hybrid silica membrane; H2O/BTESE molar ratio; pervaporation; acetic acid dehydration
ClassificationCode:TQ028.8
year,volume(issue):pagination: 2023,43(5):44-49

Abstract:
 BTESE organic-inorganic hybrid silica membranes were prepared by acid-catalyzed sol-gel method using 1,2-bis(triethoxysilyl)ethane (BTESE) as the silica precursor. To improve its pervaporation acetic acid dehydration performance, the silica network was regulated by the water to BTESE molar ratio (H2O/BTESE) in the sol-gel synthesis. As the water content increased, the hydrolyzed Si-OH increased and the pore size of the formed gel was effectively reduced, which increased the separation factor and decreased the flux in the membrane for pervaporation acetic acid dehydration. The BTESE membrane prepared with a molar ratio of 180 of H2O/BTESE showed the best overall separation index, with pervaporation separation of 90wt% acetic acid/10 wt% aqueous solution at 75 ℃ with permeate flux and separation factor of 1.25 kg/(m2·h) and 1050, respectively. The membrane was immersed in acetic acid solution and exposed to air, and the acetic acid dehydration separation performance of the membrane remained basically stable for up to 80 days, with good long-term acid resistance and anti-oxidation chemical stability.

Funds:
国家重点研发计划(2022YFB3805003)资助项目;常州市科技计划项目(CJ20220140,CZ20220033);江苏省教育厅国际合作联合实验室

AuthorIntro:
张子男(1997-),男,吉林辽源,硕士研究生,主要从事膜分离方面研究。

Reference:
 [1]Aghbashlo M, Tabatabaei M, Rastegari H, et al. Exergy-based sustainability analysis of acetins synthesis through continuous esterification of glycerol in acetic acid using Amberlyst®36 as catalyst [J]. J Cleaner Prod, 2018, 183: 1265-1275.
[2]Pal P, Kumar R, Banerjee S. Manufacture of gluconic acid: A review towards process intensification for green production [J]. Chem Eng Process, 2016, 104: 160-171.
[3]Hao S, Jia Z, Wen J, et al. Progress in adsorptive membranes for separation – A review [J]. Sep Purif Technol, 2021, 255: 117772.
[4]Raza W, Wang J X, Yang J H, et al. Progress in pervaporation membranes for dehydration of acetic acid [J]. Sep Purif Technol, 2021, 262: 118338.
[5]李亚楠, 廖明佳, 龚耿浩. 聚合物支撑柔性有机二氧化硅杂化膜的制备与异丙醇脱水应用研究 [J]. 膜科学与技术, 2021, 41(6): 27-34, 42.
[6]Castricum H L, Kreiter R, van Veen H M, et al. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability [J]. J Membr Sci, 2008, 324(1-2): 111-118.
[7]Tsuru T, Shibata T, Wang J H, et al. Pervaporation of acetic acid aqueous solutions by organosilica membranes [J]. J Membr Sci, 2012, 421: 25-31.
[8]Nagasawa H, Niimi T, Kanezashi M, et al. Modified gas-translation model for prediction of gas permeation through microporous organosilica membranes [J]. AIChE J, 2014, 60(12): 4199-4210.
[9]Raza W, Yang J H, Wang J X, et al. HCl modification and pervaporation performance of BTESE membrane for the dehydration of acetic acid/water mixture [J]. Sep Purif Technol, 2020, 235:116102.
[10]王佳轩, 李良清, 马磊, 等. 两步变温晶种法制备丝光沸石膜及其渗透汽化乙酸脱水性能 [J]. 无机化学学报, 2023, 39(1): 91-97.
[11]李璘喆, 杨建华. CHA型分子筛膜的研究进展 [J]. 膜科学与技术, 2022, 42(02): 138-145.
[12]Song H, Wei Y, Wang C, et al. Tuning sol size to optimize organosilica membranes for gas separation [J]. Chin J Chem Eng, 2018, 26(1): 53-59.
[13]Ciriminna R, Fidalgo A, Pandarus V, et al. The Sol–Gel Route to Advanced Silica-Based Materials and Recent Applications [J]. Chem Rev, 2013, 113(8): 6592-6620.
[14]廖明佳, 朱韵, 任秀秀, 等. 微孔桥联有机硅杂化膜的制备方法及影响因素研究进展 [J]. 膜科学与技术, 2021, 41(2): 147-156.
[15]Ibrahim S M, Nagasawa H, Kanezashi M, et al. Robust organosilica membranes for high temperature reverse osmosis (RO) application: Membrane preparation, separation characteristics of solutes and membrane regeneration [J]. J Membr Sci, 2015, 493: 515-523.
[16]Asaeda M, Yang J, Sakou Y. Porous silica-zirconia (50%) membranes for pervaporation of iso-propyl alcohol (IPA)/water mixtures [J]. J Chem Eng Jpn, 2002, 35(4): 365-371.
[17]Yang J H, Yoshioka T, Tsuru T, et al. Pervaporation characteristics of aqueous–organic solutions with microporous SiO2–ZrO2 membranes: Experimental study on separation mechanism [J]. J Membr Sci, 2006, 284(1): 205-213.
[18]Ren X X, Yu H, Guo M, et al. Long alkyl chain-containing organosilica/silicalite-1 composite membranes for alcohol recovery [J]. Microporous Mesoporous Mater, 2022, 338: 111947.
[19]Ma X, Hu C, Guo R, et al. HZSM5-filled cellulose acetate membranes for pervaporation separation of methanol/MTBE mixtures [J]. Sep Purif Technol, 2008, 59(1): 34-42.
[20]马顺选, 宋小三, 王三反, 等. 渗透汽化膜的制备及其应用进展 [J]. 化工进展, 2021, 40(z2): 256-264.
[21]Niimi T, Nagasawa H, Kanezashi M, et al. Preparation of BTESE-derived organosilica membranes for catalytic membrane reactors of methylcyclohexane dehydrogenation [J]. J Membr Sci, 2014, 455: 375-383.
[22]Moriyama N, Nagasawa H, Kanezashi M, et al. Bis(triethoxysilyl)ethane (BTESE)-derived silica membranes: pore formation mechanism and gas permeation properties [J]. J Sol-Gel Sci Technol, 2018, 86(1): 63-72.
[23]Wang J H, Kanezashi M, Yoshioka T, et al. Effect of calcination temperature on the PV dehydration performance of alcohol aqueous solutions through BTESE-derived silica membranes [J]. J Membr Sci, 2012, 415: 810-815.
[24]Kanezashi M, Kawano M, Yoshioka T, et al. Organic–Inorganic Hybrid Silica Membranes with Controlled Silica Network Size for Propylene/Propane Separation [J]. Ind Eng Chem Res, 2012, 51(2): 944-953.
[25]Kaneko K, Ishii C, Ruike M, et al. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons [J]. Carbon, 1992, 30(7): 1075-1088.
[26]Tsuru T, Izumi S, Yoshioka T, et al. Temperature effect on transport performance by inorganic nanofiltration membranes [J]. AIChE J, 2000, 46(3): 565-574.
[27]Asaeda M, Ishida M, Waki T. Pervaporation of Aqueous Organic Acid Solutions by Porous Ceramic Membranes [J]. J Chem Eng Jpn, 2005, 38(5): 336-343.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号