Position:Home >> Abstract

Research progress on applications of membrane technology in separation and purification of monoclonal antibodies
Authors: ZHANG Hao, ZHANG Junyi, WU Haoran, YANG xin, FAN Rong, CHEN guoqiang, CHEN xiangrong, LUO Jianquan, WAN Yinhua
Units: 1. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100190, China 2. School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
KeyWords: biological macromolecule drugs; membrane separation technology; monoclonal antibody; biomedical separation membrane; membrane fouling
ClassificationCode:TQ051.8
year,volume(issue):pagination: 2023,43(5):150-158

Abstract:
 Biological macromolecule drugs play an essential role in disease diagnosis, treatment, and prevention. Their biological activity, purity, quality, and production cost are highly dependent on the performance of the downstream purification process. Thereinto, membrane separation technology possesses the advantages of no phase change, high efficiency, high selectivity, and mild operating conditions, which is widely applied in the purification of biological macromolecule drugs. Recent progress and challenges of membrane technology in monoclonal antibody clarification, capture, purification and polishing, and pre-formulation have been examined, which include depth filtration, membrane chromatography and equipment, membrane for virus removal and ultrafiltration/diafiltration process for protein concentration and buffer exchange. Finally, the conclusion and prospects of the applications of membrane technology in the separation and purification of biological macromolecule drugs have been provided.

Funds:
国家重点研发计划(2022YFC2105103);国家自然科学基金项目(22178352);

AuthorIntro:
张昊(1994-),男,甘肃靖远人,助理研究员,博士,从事膜过程功能化和集成化研究. E-mail: zhanghao@ipe.ac.cn

Reference:
 [1] MULLARD A J N R D D. FDA approves 100th monoclonal antibody product[J]. Nat. Rev. Drug Discov., 2021, 20: 491-495.
[2] BRANTLEY T J, MITCHELSON F G, KHATTAK S F J. A class of low‐cost alternatives to kifunensine for increasing high mannose N‐linked glycosylation for monoclonal antibody production in Chinese hamster ovary cells[J]. Biotechnol. Prog., 2021, 37(1): e3076.
[3] Anonymous. Monoclonal Antibodies (MAbS) Global Market Report 2023[R]. 2023.
[4] NADAR S, SHOOTER G, SOMASUNDARAM B, SHAVE E, BAKER K, LUA L H L. Intensified Downstream Processing of Monoclonal Antibodies Using Membrane Technology[J]. Biotechnol. J., 2021, 16(3): e2000309.
[5] VAN REIS R, ZYDNEY A. Bioprocess membrane technology[J]. Journal of Membrane Science, 2007, 297(1-2): 16-50.
[6] ZYDNEY A L. New developments in membranes for bioprocessing – A review[J]. J. Membrane Sci., 2021, 620: 118804.
[7] SINGH N, PIZZELLI K, ROMERO J K, CHROSTOWSKI J, EVANGELIST G, HAMZIK J, SOICE N, CHENG K S. Clarification of recombinant proteins from high cell density mammalian cell culture systems using new improved depth filters[J]. Biotechnol. Bioeng., 2013, 110(7): 1964-1972.
[8] METZGER K, VOLOSHIN A, SCHILLINGER H, KüHNEL H, MAURER M. Adsorptive filtration: a case study for early impurity reduction in an E. coli production process[J]. Biotechnol. Prog., 2019, 36(3): e2948.
[9] SOMASUNDARAM B, PLEITT K, SHAVE E, BAKER K, LUA L H L. Progression of continuous downstream processing of monoclonal antibodies: Current trends and challenges[J]. Biotechnol. Bioeng., 2018, 115(12): 2893-2907.
[10] WANG S B, GODFREY S, RADONIQI F, LIN H, COFFMAN J. Larger Pore Size Hollow Fiber Membranes as a Solution to the Product Retention Issue in Filtration-Based Perfusion Bioreactors[J]. Biotechnol. J., 2019, 14(2): e1800137.
[11] PINTO N D S, NAPOLI W N, BROWER M. Impact of micro and macroporous TFF membranes on product sieving and chromatography loading for perfusion cell culture[J]. Biotechnol. Bioeng., 2020, 117(1): 117-124.
[12] CHEN J, YU B, CONG H, SHEN Y. Recent development and application of membrane chromatography[J]. Anal. Bioanal. Chem., 2022, 31(2): 1-21.
[13] GHOSH R. Protein separation using membrane chromatography: opportunities and challenges[J]. J. Chromatogr. A, 2002, 952(1): 13-27.
[14] RAMOS-DE-LA-PENA A M, GONZALEZ-VALDEZ J, AGUILAR O. Protein A chromatography: Challenges and progress in the purification of monoclonal antibodies[J]. J. Sep. Sci., 2019, 42(9): 1816-1827.
[15] BOI C, DIMARTINO S, SARTI G C. Performance of a new protein A affinity membrane for the primary recovery of antibodies[J]. Biotechnol. Prog., 2008, 24(3): 640-647.
[16] BRAMER C, TUNNERMANN L, GONZALEZ SALCEDO A, REIF O W, SOLLE D, SCHEPER T, BEUTEL S. Membrane Adsorber for the Fast Purification of a Monoclonal Antibody Using Protein A Chromatography[J]. Membranes, 2019, 9(12): 159-173.
[17] BRESOLIN I T L, BRESOLIN I, BUENO S M A. Evaluation of Iminodiacetic Acid (IDA) as an Ionogenic Group for Adsorption of IgG(1) Monoclonal Antibodies by Membrane Chromatography[J]. Appl. Biochem. Biotechnol., 2020, 191(2): 810-823.
[18] HU M X, LI X, LI J N, HUANG J J, REN G R. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system[J]. J Chromatogr A, 2018, 1538: 94-103.
[19] HOU Y, BROWER M, POLLARD D, KANANI D, JACQUEMART R, KACHUIK B, STOUT J. Advective hydrogel membrane chromatography for monoclonal antibody purification in bioprocessing[J]. Biotechnol. Prog., 2015, 31(4): 974-982.
[20] YE J, WANG X, CHU J, YAO D, ZHANG Y, MENG J. Electrospun poly(styrene-co-maleic anhydride) nanofibrous membrane: A versatile platform for mixed mode membrane adsorbers[J]. Appl. Surf. Sci., 2019, 484: 62-71.
[21] GRUNBERG M, KUCHEMULLER K B, TOPPNER K, BUSSE R A. Scalable, Robust and Highly Productive Novel Convecdiff Membrane Platform for mAb Capture[J]. Membranes, 2022, 12(7): 677.
[22] LIU Z, WICKRAMASINGHE R, QIAN X. Membrane Chromatography for Protein Purifications from Ligand Design to Functionalization[J]. Separ. Sci. Technol., 2016, 52: 299-319.
[23] FAN J, LUO J, CHEN X, WAN Y. Polydopamine meets porous membrane: A versatile platform for facile preparation of membrane adsorbers[J]. J. Chromatogr. A, 2016, 1448: 121-126.
[24] NADAR S, SOMASUNDARAM B, CHARRY M, BILLAKANTI J, SHAVE E, BAKER K, LUA L H L. Design and optimization of membrane chromatography for monoclonal antibody charge variant separation[J]. Biotechnol. Prog., 2022, : e3288.
[25] TRNOVEC H, DOLES T, HRIBAR G, FURLAN N, PODGORNIK A. Characterization of membrane adsorbers used for impurity removal during the continuous purification of monoclonal antibodies[J]. J. Chromatogr. A, 2020, 1609: 460518.
[26] FAN J, LUO J, CHEN X, WAN Y. Facile preparation of salt-tolerant anion-exchange membrane adsorber using hydrophobic membrane as substrate[J]. J. Chromatogr. A, 2017, 1490: 54-62.
[27] BOI C, MALAVASI A, CARBONELL R G, GILLESKIE G. A direct comparison between membrane adsorber and packed column chromatography performance[J]. J. Chromatogr. A, 2020, 1612: 460629.
[28] MADADKAR P, SADAVARTE R, BUTLER M, DUROCHER Y, GHOSH R. Preparative separation of monoclonal antibody aggregates by cation-exchange laterally-fed membrane chromatography[J]. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2017, 1055-1056: 158-164.
[29] MADADKAR P, UMATHEVA U, HALE G, DUROCHER Y, GHOSH R. Ultrafast Separation and Analysis of Monoclonal Antibody Aggregates Using Membrane Chromatography[J]. Anal. Chem., 2017, 89(8): 4716-4720.
[30] CHEN G, UMATHEVA U, ALFORQUE L, SHIRATAKI H, OGAWA S, KATO C, GHOSH R. An annular-flow, hollow-fiber membrane chromatography device for fast, high-resolution protein separation at low pressure[J]. J. Membrane Sci., 2019, 590: 117305.
[31] KISS R. Practicing Safe Cell Culture: Applied Process Designs for Minimizing Virus Contamination Risk[J]. PDA J. Pharm. Sci. Technol., 2011, 65: 715-729.
[32] KOSIOL P, MüLLER M T, SCHNEIDER B, HANSMANN B, THOM V, ULBRICHT M. Determination of pore size gradients of virus filtration membranes using gold nanoparticles and their relation to fouling with protein containing feed streams[J]. J. Membrane Sci., 2018, 548: 598-608.
[33] ISU S, QIAN X, ZYDNEY A L, WICKRAMASINGHE S R. Process- and Product-Related Foulants in Virus Filtration[J]. Bioengineering, 2022, 9(4): 155.
[34] BOHONAK D, ZYDNEY A. Compaction and permeability effects with virus filtration membranes[J]. J. Membrane Sci., 2005, 254(1-2): 71-79.
[35] BILLUPS M, MINERVINI M, HOLSTEIN M, FEROZ H, RANJAN S, HUNG J, BAO H, GHOSE S, LI Z J, ZYDNEY A L. Antibody retention by virus filtration membranes: Polarization and sieving effects[J]. J. Membrane Sci., 2021, 620: 118884.
[36] PHILLIPS M, BOLTON G, KRISHNAN M, LEWNARD J, RAGHUNATH B. Virus Filtration Process Design and Implementation. In Process Scale Bioseparations for the Biopharmaceutical Industry, 2007: 335-388.
[37] PELES J, CACACE B, CARBRELLO C, GIGLIA S, ZYDNEY A L. Global pore blockage - cake filtration model including pressure effects on protein fouling in virus filtration[J]. J. Membrane Sci., 2022, 662: 120961.
[38] NAMILA F, ZHANG D, TRAYLOR S, NGUYEN T, SINGH N, WICKRAMASINGHE R, QIAN X. The effects of buffer condition on the fouling behavior of MVM virus filtration of an Fc-fusion protein[J]. Biotechnol. Bioeng., 2019, 116(10): 2621-2631.
[39] BARNARD J G, KAHN D, CETLIN D, RANDOLPH T W, CARPENTER J F. Investigations into the Fouling Mechanism of Parvovirus Filters During Filtration of Freeze–Thawed mAb Drug Substance Solutions[J]. J. Pharm. Sci., 2014, 103(3): 890-899.
[40] PELES J, FALLAHIANBIJAN F, CACACE B, CARBRELLO C, GIGLIA S, ZYDNEY A L. Effect of operating pressure on protein fouling during constant-pressure virus removal filtration[J]. J. Membrane Sci., 2022, 648: 120351.
[41] YU Z, MOOMAW J F, THYAGARAJAPURAM N R, GENG S B, BENT C J, TANG Y. A mechanistic model to account for the Donnan and volume exclusion effects in ultrafiltration/diafiltration process of protein formulations[J]. Biotechnol. Prog., 2021, 37(2): e3106.
[42] BAEK Y, ZYDNEY A L. Intermolecular interactions in highly concentrated formulations of recombinant therapeutic proteins[J]. Curr. Opin. Biotechnol., 2018, 53: 59-64.
[43] JABRA M G, ZYDNEY A L. Design and optimization of Single Pass Tangential Flow Filtration for inline concentration of monoclonal antibodies[J]. J. Membrane Sci., 2022, 643: 120047.
[44] YEHL C J, ZYDNEY A L. Single-use, single-pass tangential flow filtration using low-cost hollow fiber modules[J]. J. Membrane Sci., 2020, 595: 117517.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号