Position:Home >> Abstract

Research progress of membrane technology for the production of green hydrogen
Authors: SHI Puxin, LUAN Liping, LIU Xinlei
Units: Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin Key Laboratory of Membrane Science and Desalination Technology, State Key Laboratory of Chemical Engineering (Tianjin University), Tianjin 300072, China
KeyWords: green hydrogen; hydrogen production technology; membranes for water electrolysis; hydrogen purification membrane
ClassificationCode:TQ028.2
year,volume(issue):pagination: 2023,43(6):128-138

Abstract:
  Compared with the fossil fuel based hydrogen production, green hydrogen has the advantages of renewable raw materials, low carbon emissions in the production process and so on. The development of green hydrogen can make an important contribution to the realization of the “double-carbon” target. This paper introduced the production methods of green hydrogen, including photocatalytic hydrogen production, hydrogen production by electrolytic water and hydrogen production by biomass, etc. Membranes have selective permeability, which play an important role in the production of green hydrogen. The application scenarios of membranes in the production process were reviewed, including the membranes for water electrolytic, hydrogen separation membranes and so on. The research progress of membranes for green hydrogen production and application status of membranes in green hydrogen production was discussed , the existing challenges were prospected.

Funds:
国家自然科学基金项目(22008171);国家重点研发计划项目(2021YFB3801200)要注明是什么级别的基金项目(已修改)

AuthorIntro:
史普鑫(1995-),男,山东鄄城人,博士研究生,主要从事高综合性能氢气纯化膜的制备以及应用工作,E-mail:shipuxin1995@126.com

Reference:
  [1] Voldsund M, Jordal K, Anantharaman R. Hydrogen production with CO2 capture[J]. Int J Hydrogen Energy, 2016, 41(9): 4969-4992.
 [2] 李星国. 氢与氢能[M]//北京:科学出版社, 2022.
 [3] IEA. Energy technolog perspectives(revised version)[D]. Paris: International energy agency, 2021.
 [4] IEA. International energy agencytechnology roadmap: Hydrogen and fuel cells[D]. Paris: International Energy Agency, 2015.
 [5] Kogan A. Direct solar thermal splitting of water and on-site separation of the products — Ⅳ. Development of porous ceramic membranes for a solar thermal water-splitting reactor[J]. Int J Hydrogen Energy, 2000, 25(11): 1043-1050.
 [6] Perkins C. Likely near-term solar-thermal water splitting technologies[J]. Int J Hydrogen Energy, 2004, 29(15): 1587-1599.
 [7] 李建林, 梁忠豪, 李光辉, 等. 太阳能制氢关键技术研究[J]. 太阳能学报, 2022, 43(3): 2-11.
 [8] Muhich C L, Ehrhart B D, Al-Shankiti I, et al. A review and perspective of efficient hydrogen generation via solar thermal water splitting[J]. Wiley interdisciplinary reviews[J]. Energy and Environment, 2016, 5(3): 261-287.
 [9] 安攀, 张庆慧, 杨状, 等. 双碳目标下太阳能制氢技术的研究进展[J]. 化学学报, 2022, 80(12): 1629-1642.
 [10] Wang S, Wang X. Multifunctional metal-organic frameworks for photocatalysis[J]. Small, 2015, 11(26): 3097-3112.
[11] Schröder M, Kailasam K, Borgmeyer J, et al. Hydrogen evolution reaction in a large-scale reactor using a carbon nitride photocatalyst under natural sunlight irradiation[J]. Energy Technol (Weinh), 2015, 3(10): 1014-1017.
[12] Tong W, Forster M, Dionigi F, et al. Electrolysis of low-grade and saline surface water[J]. Nat Energy, 2020, 5(5): 367-377.
[13] 邹才能, 李建明, 张茜, 等. 氢能工业现状、技术进展、挑战及前景[J]. 天然气工业, 2022, 42(4): 1-20.
[14] 王文烨, 姜飞, 张新鹤, 等. 含规模氢能综合利用的高比例风光多能源系统低碳灵活调度[J]. 电网技术, 2023: 1-15.
[15] Khataee A, Shirole A, Jannasch P, et al. Anion exchange membrane water electrolysis using aemion™ membranes and nickel electrodes[J]. J Mater Chem A Mater, 2022, 10(30): 16061-16070.
[16] Miller H A, Bouzek K, Hnat J, et al. Green hydrogen from anion exchange membrane water electrolysis: a review of recent developments in critical materials and operating conditions[J]. Sustainable Energy and Fuels, 2020(4): 2114-2133.
[17] 王明华. 新能源电解水制氢技术经济性分析[J]. 现代化工, 2023,43(5):1-5.
[18] 孙立. 生物质热解制氢机理和实验研究[D]. 天津: 天津大学, 2007.
[19] 高宁博. 高温过热水蒸气的制备及生物质高温气化重整制氢特性研究[D]. 大连: 大连理工大学, 2009.
[20] Hoang A T, Huang Z, Ni?eti? S, et al. Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in vietnam[J]. Int J Hydrogen Energy, 2022, 47(7): 4394-4425.
[21] 张麓岩. 纤维素降解产氢菌种选育及木薯渣产氢工艺研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[22] Ursua A, Gandia L M, Sanchis P. Hydrogen production from water electrolysis: Current status and future trends[J]. Proc IEEE Inst Electr Electron Eng, 2012, 100(2): 410-426.
[23] Patnaik P, Mondal R, Sarkar S, et al. Proton exchange membrane from the blend of poly(vinylidene fluoride) and functional copolymer: Preparation, proton conductivity, methanol permeability, and stability[J]. Int J Hydrogen Energy, 2022, 47(99): 41920-41931.
[24] Ghosh P, Ganguly S, Kargupta K. Phosphosilicate nano-network (PPSN)-polybenzimidazole (PBI) composite electrolyte membrane for enhanced proton conductivity, durability and power generation of HT-PEMFC[J]. Int J Hydrogen Energy, 2022, 47(75): 32287-32302.
[25] Bai Y, Han D, Xiao M, et al. New anhydrous proton exchange membranes based on polypyrrolone (PPY) for high-temperature polymer electrolyte fuel cells[J]. J Power Sources, 2023, 563: 232823.
[26] Yang J, Li X, Shi C, et al. Fabrication of PBI/SPOSS hybrid high-temperature proton exchange membranes using spaek as compatibilizer[J]. J Membr Sci, 2021, 620: 118855.
[27] Moorthy S, Sivasubramanian G, Kannaiyan D, et al. Neoteric advancements in polybenzimidazole based polymer electrolytes for high-temperature proton exchange membrane fuel cells - A versatile review[J]. Int J Hydrogen Energy, 2023,48(72):28103-28118.
 [28] Annapragada R, Vandavasi K R, Kanuparthy P R. Metal-organic framework membranes for proton exchange membrane fuel cells: A mini-review[J]. Inorganica Chim Acta, 2023, 546: 121304.
[29] 桑菁. 全碳链型聚合物阴离子交换膜的构筑与性能研究[D]. 北京: 北京化工大学, 2022.
[30] 冯江涵, 宋钫. 阴离子交换膜电解池的研究进展[J]. 化工进展, 2023,42(7):3501-3509.).
[31] Li L, Akhtar Qaisrani N, Ma L, et al. Mixed matrix anion exchange membrane containing covalent organic frameworks: Ultra-low iec but medium conductivity[J]. Appl Surf Sci, 2021, 560: 149909.
[32] Ma L, Hussain M, Li L, et al. Octopus-like side chain grafted poly(arylene piperidinium) membranes for fuel cell application[J]. J Membr Sci, 2021, 636: 119529.
[33] Zhao T, Long C, Wang Z, et al. Multication cross-linked poly(p-terphenyl isatin) anion exchange membranes for fuel cells: Effect of cross-linker length on membrane performance[J]. ACS Appl Energ Mater, 2021, 4(12): 14476-14487.
[34] Chen J, Li C, Wang J, et al. A general strategy to enhance the alkaline stability of anion exchange membranes[J]. J Mater Chem A Mater, 2017, 5(13): 6318-6327.
[35] Li N, Leng Y, Hickner M A, et al. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells[J]. J Am Chem Soc, 2013, 135(27): 10124-10133.
[36] Pham T H, Olsson J S, Jannasch P. N-spirocyclic quaternary ammonium ionenes for anion-exchange membranes[J]. J Am Chem Soc, 2017, 139(8): 2888-2891.
[37] Tao Z W, Wang C Y, Zhao X Y, et al. Progress in high-performance anion exchange membranes based on the design of stable cations for alkaline fuel cells[J]. Adv Mater Technol, 2021, 6(5): 2001220.
[38] Pan D, Pham T H, Jannasch P. Poly(arylene piperidine) anion exchange membranes with tunable N-alicyclic quaternary ammonium side chains[J]. ACS Appl Energ Mater, 2021, 4(10): 11652-11665.
[39] Wang X, Lin C, Gao Y, et al. Anion exchange membranes with twisted poly(terphenylene) backbone: Effect of the N-cyclic cations[J]. J Membr Sci, 2021, 635: 119525.
[40] 邓麦村, 金万勤. 膜技术手册[M]//北京:化学工业出版社, 2020.
[41] Baker R W. Membrane technology and applications[M]// Third Edition,Chichester: John Wiley & Sons Ltd., 2012.
[42] Singla S, Shetti N P, Basu S, et al. Hydrogen production technologies_Membrane based separation, storage and challenges[J]. J Environ Manage, 2022, 302: 113963.
[43] Ockwig N W, Nenoff T M. Membranes for hydrogen separation[J]. Chem Rev, 2007, 107(10): 4078-4110.
[44] Merkel T C, Zhou M, Baker R W. Carbon dioxide capture with membranes at an IGCC power plant[J]. J Membr Sci, 2012, 389: 441-450.
[45] Giordano L, Gubis J, Bierman G, et al. Conceptual design of membrane-based pre-combustion CO2 capture process: Role of permeance and selectivity on performance and costs[J]. J Membr Sci, 2019, 575: 229-241.
[46] Kumbharkar S C, Liu Y, Li K. High performance polybenzimidazole based asymmetric hollow fibre membranes for H2/CO2 separation[J]. J Membr Sci, 2011, 375(1-2): 231-240.
[47] Zhu L, Swihart M T, Lin H. Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H2/CO2 separation[J]. Energy Environ Sci, 2018, 11(1): 94-100.
[48] Singh R P, Dahe G J, Dudeck K W, et al. High temperature polybenzimidazole hollow fiber membranes for hydrogen separation and carbon dioxide capture from synthesis gas[J]. Energy Procedia, 2014, 63: 153-159.
[49] Shan M, Liu X, Wang X, et al. Facile manufacture of porous organic framework membranes for precombustion CO2 capture[J]. Sci Adv, 2018, 4(9): eaau1698.
[50] Ding S, Wang W. Covalent organic frameworks (COFs): From design to applications[J]. Chem Soc Rev, 2013, 42(2): 548-568.
[51] Rabbani M G, El-Kaderi H M. Template-free synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage[J]. Chem Mater, 2011, 23(7): 1650-1653.
[52] Tian Y, Zhu G. Porous aromatic frameworks (PAFs)[J]. Chem Rev, 2020, 120(16): 8934-8986.
[53] Wang H, Wang M, Liang X, et al. Organic molecular sieve membranes for chemical separations[J]. Chem Soc Rev, 2021, 50(9): 5468-5516.
[54] Fu J, Das S, Xing G, et al. Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2[J]. J Am Chem Soc, 2016, 138(24): 7673-7680.
[55] Wang X, Shan M, Liu X, et al. High-performance polybenzimidazole membranes for helium extraction from natural gas[J]. ACS Appl Mater Interfaces, 2019, 11(22): 20098-20103.
[56] Shan M, Liu X, Wang X, et al. Novel high performance poly(p-phenylene benzobisimidazole) (PBDI) membranes fabricated by interfacial polymerization for H2              separation[J]. J Mater Chem A Mater, 2019, 7(15): 8929-8937.
[57] Cong S, Wang J, Wang Z, et al. Polybenzimidazole (PBI) and benzimidazole-linked polymer (BILP) membranes[J]. Green Chemical Engineering, 2021, 2(1): 44-56.
[58] Sekizkardes A K, Culp J T, Islamoglu T, et al. An ultra-microporous organic polymer for high performance carbon dioxide capture and separation[J]. Chem Commun (Camb), 2015, 51(69): 13393-13396.
[59] Gao A, Yan X, Cong S, et al. Designed channels in thin benzimidazole-linked polymer membranes for hot H2 purification[J]. J Membr Sci, 2023, 668: 121293.
[60] Hallenbeck P C. Fermentative hydrogen production: Principles, progress, and prognosis[J]. Int J Hydrogen Energy, 2009, 34(17): 7379-7389.
[61] Nath K, Das D. Improvement of fermentative hydrogen production: Various approaches[J]. Appl Microbiol Biotechnol, 2004, 65(5): 520-529.
[62] Lin H, Freeman B D. Materials selection guidelines for membranes that remove CO2 from gas mixtures[J]. J Mol Struct, 2005, 739(1-3): 57-74.
[63] Bakonyi P, Nemestóthy N, Bélafi-Bakó K. Biohydrogen purification by membranes: An overview on the operational conditions affecting the performance of non-porous, polymeric and ionic liquid based gas separation membranes[J]. Int J Hydrogen Energy, 2013, 38(23): 9673-9687.
[64] Bakonyi P, Kumar G, Bélafi-Bakó K, et al. A review of the innovative gas separation membrane bioreactor with mechanisms for integrated production and purification of biohydrogen[J]. Bioresour Technol, 2018, 270: 643-655.
[65] Bakonyi P, Buitrón G, Valdez-Vazquez I, et al. A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation[J]. Appl Energy, 2017, 190: 813-823.
[66] Cserjési P, Nemestóthy N, Vass A, et al. Study on gas separation by supported liquid membranes applying novel ionic liquids[J]. Desalination, 2009, 245(1/2/3): 743-747.
[67] 宋子龙. 碱性水电解槽用聚砜隔膜的研制[D]. 长沙: 湖南大学, 2018.
[68] 侯朋飞, 康鹏, 白建明. 碱性水电解隔膜材料最新进展[J]. 现代化工, 2023, 43(3): 62-66.
[69] Aili D, Kraglund M R, Tavacoli J, et al. Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis[J]. J Membr Sci, 2020, 598: 117674.
[70] Makrygianni M, Aivali S, Xia Y, et al. Polyisatin derived ion-solvating blend membranes for alkaline water electrolysis[J]. J Membr Sci, 2023, 669: 121331.
 

Service:
Download】【Collect

《膜科学与技术》编辑部 Address: Bluestar building, 19 east beisanhuan road, chaoyang district, Beijing; 100029 Postal code; Telephone:010-80492417/010-80485372; Fax:010-80485372 ; Email:mkxyjs@163.com

京公网安备11011302000819号